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Abstract 

This paper presents a method to compress the test response data using compressed 
sensing theory. In this paper, the test response is first grouped according to the different 
values of sparsity k, aiming to reduce the large number of compatible test vectors in the 
test response to provide the reduced data for the subsequent sample compression; then 
by establishing the corresponding sparse random measurement matrix, first multiplying 
the grouped test vector with the perception matrix, and selecting the vector with the 
largest absolute value in the result as the result of our final compression. Finally, 
compare the sparsity k value of the compressed set. If the k value is different, the 
compressed set can be compatible, and if the same, it can be compressed again. In this 
paper, DC synthesize the test circuit, generated by ATPG, and VCS. Finally, the sparse 
random measurement matrix is generated by Matlab, and the final compression result is 
calculated, and the failure coverage of the test vector is tested by HOPE. The iments show 
that the compression rate and failure coverage improve compared with other methods. 
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1. Introduction 

As an important part of the test optimization method, test compression can effectively reduce 
the amount of test data and reduce the test time and power consumption. According to the type 
of test data, test compression can be divided into test incentive compression and test response 
compression. Generally speaking, test incentive compression is lossless compression, and test 
response compression is lossy compression. Test response compression is more effective on 
test data, so it is of important practical significance to conduct research on test response 
compression. On this basis, with the rapid development and application of digital signal 
processing, the ability to obtain test vectors is constantly increasing, and the amount of data to 
be processed is also increasing by at an amazing speed. In recent years, a new theory of 
compressed sensing (Compressive / Compressed Sensing) has been born. For sparse or 
compressible signals, this method can properly compress the data while acquiring signals. Its 
outstanding advantage is that it can reduce the sampled data, save storage space, and contains 
enough information. 

In 2016, Yuan et al. proposed a SoC test data compression scheme based on alternate statistical 
journey length encoding. This method has the advantages of high compression ratio, low 
scanning test power consumption, and small extra area cost for on-on-chip system scanning 
test. However, the fault coverage rate is not mentioned in this scheme, and there is still room 
for improvement. In 2017, Au-Yeung, Enrico. They constructed a new class of random matrix. 
In the scheme, a non-random matrix is constructed, and then its matrix is decomposed into 
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multiple submatrix, using these submatrix and Bernoulli random matrix to construct the final 
matrix. Therefore, this new type of random matrix. Although the compression rate of this 
scheme is high, the hardware cost and power consumption are not mentioned, which remains 
to be verified by experiments. In 2017, Lu Cunbo et al. proposed a deterministic measurement 
matrix construction algorithm based on multi-dimensional pseudorandomized sequence. The 
algorithm is able to produce binary pseudorandom sequences and transform them numerically 
to obtain the corresponding set of bipolar pseudorandom sequences, which are reconstructed 
into a deterministic measurement matrix. In 2021, Yang Junpo and Liu Wenyuan constructed a 
deterministic measurement matrix by using the bipolar matrix of the binary pseudo-random 
sequence. Simulation experiments show that in the same condition of the compressed sensing 
algorithm, the two schemes constructed matrix are implemented by the linear feedback shift 
register structure, are easy to implement hardware, but the two schemes for a multi-
dimensional random sequence matrix, a two-dimensional random sequence structure matrix, 
which is simpler than the former is easier to operate, and both are deterministic matrix, 
randomness is bad. In 2018, Bhandari et al. proposed a vector generation technique. This 
technique uses partial fixed bit sequence and bit insertion techniques, and the simulation 
results show that the method can reduce the test power consumption while improving the 
failure coverage compared with LFSR based BIST. In 2019, Dilp et al. used reseeding LFSR 
technique to generate a pseudo-random test vector for the tested circuit. This technology has 
low power consumption and low amount of test data, with an average failure coverage of about 
90%. In 2020, Lokesh Sivanandam et al. proposed an encoding compression technique is 
proposed by using the order of power conversion and then using the Huffman encoding 
technique. This method not only improves the compression rate of the test data, but also 
reduces the test power consumption of the circuit. The proposed method in the paper maintains 
a small area overhead while also reducing the test time. 

In view of the test data compression, domestic and foreign scholars have done a lot of research 
to improve the compression efficiency, reduce the test time and other aspects, and have 
achieved good results. According to the above conditions, combined with the characteristics of 
random observation matrix and deterministic observation matrix, as well as the conditions 
conducive to the hardware implementation, this paper explores and innovates in these aspects, 
and proposes the test response compression design with sparse random matrix. By comparing 
the performance of a variety of measurement matrix, the final using sparse random matrix to 
compress the test response data, because the test response data is too large and there is a great 
correlation between the vector, so the first test response data block processing, data 
compatibility before compression, this scheme can improve the efficiency of data compression 
and can improve the data compression rate. The flow chart of the overall scheme is shown in 
Figure 1. 

2. Compression sensing process 

2.1. Perception process 

In this paper, through the test circuit, the test response is the perception data we need. However, 
if the amount of perceptual data affects data analysis, it will waste a lot of time to compress. 
Therefore, we will preprocess the original test response data and process the compatible 
vectors in the data into a sparse test response vector. Figure 2 below shows the compressed 
sensing flowchart. 
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Fig. 1 The flow chart of the overall scheme 

 
Fig. 2 The compressed sensing flowchart 

We through the test circuit DC synthesis generated after the original test response A group 
compression, test vector generally composed of 0,1 and X, X called irrelevant bits, the number 
of irrelevant bits in large-scale circuit is very much, generally above 70%, because there are A 
large number of irrelevant bits in the test vector, so test vector between compatibility, different 
vector ability to detect fault, if two vectors compatible, then their failure ability, can combine 
multiple test vector, so as to reduce the test set size. As the test set size decreases, the 
compression rate of the data also increases. 

This paper defines the compatibility relationship as: we call two lines, lines fan out to the 
corresponding scan chain to complete the test. For the test set with unbalanced bit distribution, 
if the test vector is directly arranged according to the multi-scan chain structure and the pattern 
compatibility, the compression effect is not good. If the same test set is divided into 2 to 3 
groups based on the number of identical compatible items between the test vectors, and then 
separately pattern compatible, the overall compression effect is much higher. 
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The grouping method of this in this paper is as follows: after the test vector is arranged 
according to multiple scans, first find out the pattern compatibility terms for each vector, that 
is, the compatibility relationship between the rows within the vector, and then count the 
number of compatible terms of the same between the vector, which is calculated from the 
Hemming distance. Let k be the boundary value of the same number of compatible items, and 
the value of k is determined by the following algorithm: within the value range of k, select the 
value of k for each one. The vectors with the same number of compatible terms (or equal) k 
between the test set are divided into one group, and the remaining vectors are another group. 
To further improve the compression rate, the test set can be divided into three groups 
according to the grouping method mentioned above, but the decompression structure and 
control logic will also become complicated. There is a trade-off between the increased 
compression rate and the hardware cost of grouping. Based on this trade-off, the test set is 
divided into 2 groups when the number of multiple scan chains of the tested circuit is less than 
or equal to 32, and the test set is more than 32. The test vector grouping compatibility process 
is shown in Figure Figure 3. 

          
Fig. 3 The test vector grouping compatibility process 

2.2. Construction of the perception matrix 

The common response compression is to convert m×n data into p×q vector data C, and the 
relationship between the data is that m is greater than p, and n is greater than q. The 
transformation function is used to set C=Φ(D) for analysis and inference. In the compressed 
sensing method, we can represent the sparse mapping matrix of M×N dimension by Φ; besides, 
X represents the original test response vector of m×n dimension, which is sparse and sparse 
value of k; Y represents the M-dimensional observation signal, which is the compressed test 
vector. The compression process is simply Y by the known X and Φ in Y=ΦX. In this model, if 
the original signal X satisfies certain sparse characteristics, it can be compressed into a very 
small vector space through the action of the sparse mapping matrix Φ, that is, the number of 
rows of Y is much smaller than X, which also reflects the core idea of sparse theory: high-
dimensional signals are described by low-dimensional signals. 

During signal sampling, the following linear relationship exists between the original vector X, 
the measurement matrix Φ and the observed signal Y: 

Y＝ΦX                                                                                (1) 

If each row of the perception matrix Φ is regarded as a sensor, and multiplying with the signal 
X can obtain the partial information Y (M≤N) of the signal, And is an observation of the 
compressibility. Since K<M<N, Y=ΦX is an underdetermined equation whose solution should 
be with or without an array. Therefore, the constraint isometry (RIP) is proposed for the 
selection of the measurement matrix Φ. An equivalence case of the RIP principle is that the 
measured matrix X is not correlated with the sparse matrix Φ, and the RIP will be explained in 
detail later. 

If there is A measured matrix A, satisfying the A= (A1, A2, A3,..., AN) RMN, the correlation μ (A) is 
defined as follows: 

groupin
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According to the definition of compressed sensing correlation, the sparsity k is the number of 
non-0 elements of the pointing quantity, such as x= (0,1,0,1,0,0,0), and the value of k is 2. The 
more 0 in the test vector, the sparser. When we pre-process the raw test response data, the k 
value in the test vector needs to meet: 
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When n≫m in matrix A, the minimum value of ( )A  can be calculated: 
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According to the above equation (3), reducing μ(A) will increase the sparsity k of the 
reconstructed signal, so that the compression effect is better when the test vector is 
compressed. Therefore, in order to achieve the compression signal with high compression rate, 
it is required to construct the measurement matrix A and reduce its correlation μ(A) as much 
as possible. In order to ensure that the observation matrix does not place two different k-sparse 
signals in the same set, it also ensures that the failure problem will not occur, and the 
compression quality is guaranteed. The so-called RIP is similar to the mine distance in our SoC. 
The following data will be processed according to the size of the mine distance. 

This paper proposes that the sparse random measurement matrix in compressed sensing is 
applied to the test vector compression. The matrix is defined as the matrix: if the number of 
elements with 0 is much more than the number of non-0 elements, and the distribution of non-
0 elements is not regular, the matrix is called sparse matrix. The characteristics of its sparse 
matrix are shown as follows: 

The number of non-zero elements of the sparse matrix is much smaller than the number of zero 
elements, and the distribution of these non-zero elements is not regular. 

Sparse factor is the proportional case of non-zero elements used to describe the sparse matrix. 
Let there be t non-zero elements in a sparse matrix A of n×m, then the calculation formula of 
the sparse factor k is as follows: k=t/(n×m) (when this value is less than or equal to 0.5, it can 
be considered as a sparse matrix). 

In this paper, X is an n-dimensional feature vector; D is a standardized basic matrix, composed 
of basic atoms of elements, also called dictionary; X can be linearly composed of D and a small 
number of atoms, its representation coefficient is sparse.as follows: 



International Journal of Science Volume 10 Issue 3, 2023 

ISSN: 1813-4890  
 

164 

( ) ( )



























=

n

2

1

n21 dddX




                                                        

(6) 

Among 
mRX ， nmRD  ， nR  are a sparse signal, and m<n. From the knowledge of 

linear algebras, the sparse coefficients have an infinite number of solutions. According to the 
sparsity condition, we can pick out the solutions with the least non-0 elements among all the 
feasible solutions, that is, to satisfy the sparsity. The following mathematical model is then 
obtained: 

y||||.t.s||D-x||min 0
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(7) 

From the above equation, we require that the solution is the minimum two-norm of x-Dα when 
the sparsity signal α is close to 0. Therefore, in this paper, a sparse random matrix Φ of size 
M×N is constructed, where the number of elements in each column is not zero is d. The form of 
the constructed sparse random matrix Φ is shown in Equation (9). In equation (9), the 
independent variables ai, j, i=1,..., M, j=1,..., N satisfy the probability distribution p(x) of equation 
(8). 
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In this paper, we implement the generation of a random sparse matrix via matlab. This matrix 
is passed by first generating a full 0 matrix Φ of size M×N, and M<N. Then for each column of 
the matrix Φ, randomly selected d positions and then the selected position over 1, here d<M. 
Each column of the sparse random measurement matrix has only d non-0 elements, simple 
structure and easy to construct and save in practice. When selecting the parameter value, it is 
decided according to the test matrix generated after the test response group compression, 
where the value of M is less than the value of N, and the value of d is less than the value of M, 
d<M<N. Where the value of N is determined by the number of output ports in the tested circuit; 
the value of d is determined by the value of sparsity k in the matrix A generated by the test 
vector, taking the progressive upper bound value of k, namely d=O (k); the value of M is 
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2.3. Sampling and compression process 

We multiplied the test vector matrix by the perceptual random matrix, and obtained the base 
vector corresponding to the vector where the absolute value of all coefficients was the largest 
in the coefficient vector, and then compressed the selected base vector to the final test response 

we needed. Then we can choose a matrix 
 T

n

T

3

T

2

T

1 AAAAA ，，，， =
,Where 

 n,n,1n,1n,0

T

n aaaaA mm−= 
is the test response, and    n,,3,2,1n,m  .Among them,
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nAY = ,Y is the column vector An in the signal set matrix A that we collected and it is projected 
to the perception matrix Φ (namely sparse random matrix) to obtain the final test response set, 

finally  m1m21 yyyyY −=  .We take the base vector corresponding to the ym value 
with the largest absolute value in the set Y as the test vector that we finally seek. The calculation 
procedure is shown below. 
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In this paper, the method of compressed perception is adopted to compress the test response, 
and then compress the perception first. The perception process is the process of processing the 
test circuit, so that the signal is perceived, and then the perceived signal is compressed through 
the perception matrix Φ. 

2.4. Compression, confusion and fault coverage analysis 

The test response compression does not necessarily have to ensure the failure coverage rate, 
as long as the characteristic value of the response compression is different from the expected 
result. The impaired nature of the confusion rate and the test response compression may cause 
the loss of the original data, resulting in some cases where the fault existing in the circuit cannot 
be detected, and the resulting characteristic value after the fault compression is the same. 
Confusion is a problem that needs to be solved in response compression. Confusion means that 
the response data with wrong bits is exactly the same as the compression results after the 
correct response data is compressed, so that the tester can misunderstand the wrong response 
results as correct, and the less the confusion occurs in the test, the better. 

HOPE failure simulation has many functions, which can be used to calculate the failure coverage 
of a given failure model, auxiliary test generation and test set compression, etc. Its inputs 
include circuit networks and test vector sets. The circuit description form accepted by HOPE is 
the network table file, which is basically consistent with the reference circuit table form of the 
network table, that is, the circuit structure is described in the circuit description language, 
including the original input transmission number, gate number and circuit structure of the 
circuit. 

In this method, the confusion rate of the compression circuit is calculated as follows: 
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The most commonly used compression ratio is selected to measure the compression ability of 
the test vector compression method based on the calibration matrix, which is defined as: 

ends datainput  ofNumber 

ends dataoutput  ofNumber 
R =

 
Because HOPE needs to be compiled in a Linux environment, this article uses the synophys 
software to run in a Linux environment. We enter a series of command-line instructions to 
obtain the required fault simulation results. The fault simulation interface gives the circuit 
structure, program running time and fault coverage rate. 

3. Experimental results and analysis 

Table 1 lists the comparison of the compression rate of this method and the direct compression 
method. It can be seen in the table that the compression method proposed in this paper can get 
better compression effect compared with the direct compression method, and the compression 
rate is generally increased by 20%. The s38417 circuit has improved the most. But the 
compression rate of the s5378 circuit is slightly lower than the overall compression rate. This 
is because the test vector data of the tested circuit itself is relatively small, resulting in reduced 
operability in data compression, so the compression rate is lower than that of other circuits. In 
addition, the test vector set is compatible in advance, while the s13207 circuit has less 
compressed vectors in the processing, so the scale of the compressed vector number is not 
reduced much after the transformation analysis, so the compression rate is low, mainly because 
of the s13207 test vectors are more. However, this method is relatively balanced in the analysis 
of compression rate and failure coverage rate, and is not a solution to ignore the other. 

Table 1 Encoding compression radio comparison  

Circuit name Direct compression(%) This method compresses(%) 

s5378 47.98 88.34 

s9234 43.61 96.20 

s13207 81.31 91.89 

s15850 66.21 90.77 

s38417 43.27 96.30 

s38584 60.93 95.29 

 
Table 2 Fault coverage comparison 

 
Circuit name 

Fault coverage(%) 
Hadamard       Bernoulli        This method 

s5378 67.3 71.4 99.1 
s9234 46.7 52.3 93.5 

s13207 74.5 69.8 98.5 
s15850 72.9 84.6 96.7 
s38417 43.3 81.3 97.6 
s38584 60.9 73.6 95.9 

4. Conclusion 

In order to improve the compression rate of test response data, this paper proposes a 
compression method of test response based on compression perception. Firstly, this method 
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compress the test response data, mainly to eliminate the excess compatible vectors, reduce the 
test data set and provide favorable conditions for subsequent sampling compression, then 
multiply the constructed sparse random matrix and compress the test set based on the 
transformed results. This method has improved compression rate and failure coverage 
compared with other methods. 
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