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Abstract 

Aiming at the problem that bearing fault features are difficult to extract, this paper 
proposes a rolling bearing fault feature extraction method based on Empirical Wavelet 
Transform (EWT) and minimum entropy convolution (MED). Firstly, we use EWT to 
reduce the noise of the original signal, and use the relevant steepness criterion to screen 
out the components with high noise content and low noise, and then filter the 
components with high noise content to reduce the interference of pulse fault signals. 
Finally, the signal after noise reduction is superimposed with the signal with low noise 
content and the envelope spectrum analysis is performed. The experimental results 
show that the proposed method can effectively extract the fault characteristics and 
reduce the noise interference. 
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1. Introduction 

Rolling bearings are important parts of mechanical equipment, and due to their long-term load 
and harsh environment, they cannot guarantee the stability of operation. Rolling bearing fault 
signals are usually collected and contain noise signals, and the type of fault cannot be accurately 
and quickly determined using a single analysis method. Therefore, how to extract bearing fault 
characteristics from noise signals has become the main research content. 

The vibration signal generated by the failure of rolling bearings is generally a nonlinear, non-
cyclic and smooth high-frequency signal, which makes it difficult to extract the fault frequency. 
Common noise reduction methods include empirical mode decomposition[1], singular value 
decomposition[2], etc. Empirical modal decomposition adapts well, but has endpoint effects and 
modal aliasing. Singular value decomposition is simple, but the program takes a long time to 
run. The EWT[3], which automatically decomposes a signal into a finite number of MRA 
components based on signal characteristics, is particularly good at handling nonlinear and 
nonstationary signals. Sheng et al[4]. used the improved EWT for the aero-engine rotor 
simulation tester, and the applicability and robustness were enhanced. Li [5] used the particle 
swarm optimization algorithm to optimize the step size in the MED to achieve better noise 
reduction effect. Endo et al.[6] combined with MED to amplify the fault characteristics, which is 
convenient for easier extraction of fault frequency, but the order of the filter will affect the 
extraction of fault frequency. Xu et al. [7] used the wavelet packet transform and EEMD methods 
to process the original signal. Due to the weak bearing fault characteristics, the fault signal in 
the background of strong noise will be drowned out by the noise, which seriously affects the 
fault feature extraction. 

In order to accurately extract the fault characteristics, weaken the influence of noise, and 
enhance the fault signal impact characteristics. In this paper, MED is used to enhance the feature 
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information in the fault band, and a fault feature extraction method for rolling bearings based 
on EWT and MED is proposed. Firstly, EWT is used to reduce the noise of bearing fault signals, 
and the relevant steepness screening criterion is used as the choice to determine MRAs that 
require subsequent noise reduction treatment. Secondly, MED is used to enhance the fault 
characteristics in the frequency band of denoising signal. Finally, the fault signal is enveloped 
and demodulated, and the characteristic frequency and high harmonics of the rolling bearing 
fault are accurately extracted. 

2. EWT principle 

EWT is a signal decomposition method proposed by Gilles in 2013[8], which combines the 
complete theory of wavelet transform and the advantages of EMD multilayer decomposition to 
achieve the modal decomposition by setting a wavelet filter in the Fourier spectrum to extract 
different modes of the signal. The main steps of EWT are given as follows: 

(1) Perform the Fourier transform on the signal, and set the Fourier spectrum normalization in 
the range of [0,2𝜋], according to the aroma criterion, only the signal on [0, 𝜋] is considered in 
the subsequent analysis.  

(2) The support of Fourier is divided into N regions, as shown in Figure 1, representing the 
boundary points in each region, the frequency band of each section is expressed as 𝛬 𝑛 =
[𝜔 𝑛−1, 𝜔 𝑛], and the width of the transition region is expressed as 𝛵 𝑛 = 2𝜏 𝑛 . The empirical scale 
function and the empirical wavelet function are shown in the following equation.  

 
Figure 1. The EWT spectrum segmentation 
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Detail factor 𝑊𝑓
𝜀(𝑛, 𝑡)  and approximation coefficients  𝑊𝑓

𝜀(0, 𝑡)  are respectively shown in 

Equation (3) and (4): 

( ) ( ) ( )1, , nf nW n t f F f    −  = =
  

                                            (3) 

( ) ( ) ( )1, , nf nW n t f F f    −  = =
  

                                             (4) 

Where <, > means the inner product. The superscript refers to the conjugate of variables. 𝜑̅ 
means ∧ and 𝐹−1[·] represent the variables  in the form after the Fourier transformation and 
the inverse Fourier  transformation, respectively.   

The reconstructed signal 𝑓(𝑡) is defined as: 
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Therefore, the eigenmode component  𝑓𝑖(𝑡) obtained by EWT is defined as: 

( ) ( ) ( ),i f k tf t W i t = ＊                                                                 (6) 

3. Component screening principles 

Each component of the decomposed MRA has more or less shock signals, so it needs to be 
filtered according to the index. The correlation coefficient indicates the correlation between the 
MRA component and the original signal, but it is easily disturbed by noise. The magnitude of 
the steepness value is related to the distribution density of the signal, but if the component 
amplitude is large, it is easy to be ignored. The literature[9] calculates the absolute value of the 
correlation coefficient and the normalized steepness value for each MRA, respectively define 𝑅 
as the parameter for the sum of the correlation coefficient and the steepness coefficient of MRA: 

0
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where 𝐾𝑐 is the steepness value of each component, 𝐾0 is the original signal steepness value, 
and 𝑟𝑐  is the absolute value of the correlation coefficient for each component. To calculate the 
original signal steepness value and threshold 𝐾0 and 𝑇, the threshold calculation formula of the 
correlation coefficient method is given as: 
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Define the contrast parameter 𝐷, which has the following formula: 

𝐷 = 1 + 𝑇                                                                         (9)   

The use of this screening principle to screen each MRA component decomposed by EWT can 
effectively avoid the one-sidedness of a single criterion and retain more effective information 
for subsequent feature extraction. After many simulations with different EWT adaptive 
decomposition layers, the optimal number of decomposition layers is determined to be nine 
layers, which can take into account the fault signal of the rolling element of the inner ring and 
outer ring at the same time, making it filterable.  

4. MED principle 

MED is a technique commonly used in rotating machinery vibration to detect bearing faults, 
aiming to extract large sharp pulses in the signal, attenuate the effects of noise in the frequency 
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band, and enhance the characteristic composition of the pulse signal. Wiggins et al. first 
proposed the minimum entropy solution convolution and proposed it as an iterative FIR filter 
selection problem [10]. Suppose the vibration signal 𝑦(𝑛) can be expressed as follows: 

( ) ( ) ( ) ( )y n h n x n e n= +                                                          (10) 

where h(n) is the transfer function; x(n) is the fault signal; e(n) is the noise signal.  

The fault signal 𝑥(𝑛)  gradually loses the impact characteristics of the original signal after 
passing through the environment and transmitting the attenuation response 𝑦(𝑛) , and the 
information in the source signal becomes chaotic, that is, the entropy value increases the 
process. The purpose of MED is to eliminate the convolution effect by finding an optimal inverse 
filter 𝑤(𝑛), and obtain an inverse convolution signal 𝐼(𝑛) similar to the fault signal 𝑥(𝑛), that is: 

1

( ) ( ) ( ) ( ) ( )
L

i

I n y n w n w n y n i
=

= = −                                              (11) 

                   ( )
( )

( )

I n
y n i

w i


= −


                                                                        (12) 

where 𝐿 is the order of the inverse filter 𝑤(𝑛).  

Wiggins measures the magnitude of the entropy of the signal I(n) by calculating its norm and 
uses it as an objective function to obtain the optimal output.  
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To make the norm of equation ( 11 ) maximum, let it be derived: 
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The combined equation (11) yields: 
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The matrix form is expressed as: 
C WA=                                                                (16) 

1W CA−=                                                             (17) 

where 𝑊 is the coefficient matrix of the inverse filter; 𝐶 is the cross-correlation matrix between 
the output signal and the input signal; 𝐴 is the input signal autocorrelation matrix.  

5. Experimental verification 

To verify the effectiveness of the proposed method in the actual rolling bearing fault diagnosis, 
the bearing fault data of the Bearing Center of Western Reserve University in the United States 
was used as the analysis object for fault diagnosis, and the experimental platform was 
composed of a motor with a power of 1.5kw, a torque sensor/decoder, a power tester and an 
electronic controller. The bearing type is 6205-2RS JEM SKF deep groove ball bearings with 9 
rolling elements. The specific bearing data is shown in Table 1. 

Table 1. 6203-2RS JEM SKF deep groove ball bearings 

Contact 
angle /° 

Section 
diameter 

/mm 

Ball 
diameter 

/mm 

Outside 
diameter 

/mm 

Inner 
diameter 

/mm 

Number of 
rolling 
bodies 

0 28.50 7.94 52 25 8 

The experimental sampling frequency is fs=12kHz, the motor speed is 1772r/min, and the 
corresponding conversion frequency is 𝑓𝑟=29.53Hz. According to the bearing parameters and 
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frequency, the fault frequency 𝑓𝑖=159.93Hz and the outer ring failure frequency 𝑓𝑜=105.87Hz 
can be calculated. In this paper, the filter order size[11] uses filtersize=100.  

5.1. Outer ring signal 

The time domain diagram and frequency domain diagram of the original signal of the bearing 
outer ring are shown in Figure 2, and it can be seen that the original signal contains a large 
amount of random noise and cannot accurately extract the characteristic frequency of the fault. 
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(a) Time domain waveform 
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(b) Frequency domain waveform 

Figure 2. The characteristics of outer ring signal 

In order to remove the random noise, accurately extract the fault characteristic frequency, we 
use EWT to decompose the original signal, and the specific decomposition is shown in Figure 3. 
We calculate the number of correlations and steepness values of each component, and use the 
relevant steepness filtering criterion to calculate the values and values, and select components 
greater than D for reconstruction.  
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Figure 3. The schematic diagram of each component after the EWT decomposes the outer ring 

signal 
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The autocorrelation coefficient and steepness values for each MRA component are calculated 
as shown in Table 2 below. 

Table 2. The specific parameters of MRAs 

 MRA1 MRA2 MRA3 MRA4 MRA5 MRA6 MRA7 MRA8 MRA9 

Correlation 
Coefficient 

0.50 0.22 0.30 0.39 0.24 0.27 0.25 0.36 0.34 

Kurtosis 3.29 2.67 2.61 2.06 2.67 3.88 3.21 2.82 2.76 

R 1.50 1.04 1.09 1.01 1.05 1.44 1.23 1.22 1.21 

According to (7)~(9), D  is calculated as 1.08. As can be seen from Table 2, MRA 2, MRA 4, and 
MRA 5 have larger 𝑅  values than 𝐷  and contain more useful signals, which need to be 
reconstructed and denoised. The reconstruction signal is shown in Figure 4, the superimposed 
signal is used for MED denoise, and the time domain plot of the denoising signal is shown in 
Figure 5. 
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Figure 4. The inner outer signal after screening 
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Figure 5. The signal after MED noise reduction 

The denoised signal is superimposed with other MRA components after EWT decomposition, 
and finally the envelope spectrum analysis is carried out, and the envelope spectrum of the 
reconstructed signal is shown in Figure 6. The conversion frequency and fault frequency are 
clearly visible, and the relative error of the fault frequency is 0.38%. As a result, the fault 
features can be accurately extracted. 
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Figure 6. The envelope spectrum of reconstructed signal 

5.2. Inner ring signal 

The time domain diagram and frequency domain diagram of the original signal of the inner ring 
are shown in Figure 7. The outer circle signal contains noise frequency influence, and we cannot 
accurately determine the fault characteristics and require subsequent noise reduction 
processing. 
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(a) Time domain waveform 

A
m

p
li

tu
d

e

0 1000 2000 3000 4000 5000 60000

0.02
0.04
0.06

0.08
0.1

0.12
0.14
0.16

Frequency/Hz  
(b) Frequency domain waveform 

Figure 7. The characteristics of inner ring signal 

The signal is decomposed by EWT to obtain Figure 8, and the components are screened with 
the relevant steepness criterion to reconstruct the signal that needs to be denoised, and then 
we obtain Figure 9. 
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Figure 8. The schematic diagram of each component after the EWT decomposes the inner ring 

signal 
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Figure 9. The inner ring signal after screening 

The reconstructed signal is denoised by MED, the filter size is set to 100, and the time domain 
diagram of the signal obtained after denoise is shown in Figure 10. Then we superimpose it 
with the low-noise MRAs and finally analyze the envelope spectrum to obtain the envelope 
spectrum shown in Figure 11. It can be seen that the conversion frequency and failure 
frequency are 1 time and 2 times, and the relative error of the fault frequency is 1.08%. So the 
fault characteristics can be accurately extracted.  
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Figure 10. The signal after MED denoise 



International Journal of Science Volume 10 Issue 5, 2023 

ISSN: 1813-4890  
 

336 

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

X 29.2969

Y 0.0262354

X 158.203

Y 0.0492787

Frequency/Hz

A
m

p
li

tu
d

e

 
Figure 11. The envelope spectrum of reconstructed signal 

6. Conclusion 

In this paper, a new method for bearing fault diagnosis is proposed, which first uses adaptive 
EWT to decompose the original signal to obtain nine MRAs, and then combines the steepness 
value and autocorrelation coefficient for component screening, retains the low noise 
component, reconstructs the high noise component, and then performs MED noise reduction 
on the reconstructed signal. Finally, the noise reduction signal is superimposed with the MRA 
component with low noise content and the envelope spectrum analysis is carried out, and the 
method can effectively extract the fault characteristics and reduce noise interference by 
analyzing the measured fault signal.  

In order to accurately extract the bearing fault characteristics under the background of noise, 
the results show that a rolling bearing fault feature extraction method based on EWT and MED 
is verified by experimental measured signals. The specific conclusions of the paper are given as 
follows: 

(1) EWT is very adaptive and preserves the structure and detail of the signal well. 

(2) According to the relevant steepness screening criteria, only the MRA components with high 
noise content are denoised, which can effectively retain useful information.  

(3) The MED noise reduction method has a stable effect, and it can be considered that setting 
the appropriate number of filter layers can better improve the fault characteristics.  
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