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Abstract 

We formulated a mathematical model with time delay, which represents the latent period of 

plant disease, and investigated how the delay affects the overall disease progression and, 

mathematically, how it affects the dynamics of the model. By analyzing the transcendental 

characteristic equation, we analyze the stability of the equilibria in terms of the delay. From 

the Nyquist criterion, an estimate on the length of delay is given for which the model which is 

stable in the absence of delay remains stable. Some explicit formulae, determining the stability 

and the direction of Hopf bifurcation periodic solutions, are obtained by use of the normal 

form theory. At last, numerical simulations are carried out to support the analytical results. 
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1. Introduction 

Diseases caused by plant viruses in cassava, sweet potato and plantain are among the key constraints 
on sustainable production of these vegetatively propagated staple food crops [1]-[4]. Large 
investments are underway to develop new or more effective control strategies, including crop 
sanitation through removal of diseased plants and improved selection of planting materials, to 
alleviate poverty and malnutrition. A cultural control strategy considering the replanting or rouging 
infected plants is a widely accepted treatment for plant epidemics which involves periodic inspections 
followed by removal of the infected plants. 
A simple model for plant disease with a continuous cultural control strategy, such as replanting and 
roguing or removing, is as follows 

 
( ) ( ) ( ) ( ),

( ) (1 ) ( ) ( ) ( ) ( ),

dS t
S t I t S t

dt

dI t
S t I t I t

dt

                          (1.1) 

 
where ,S I are the number of the susceptible and the infected plants respectively, is the transmission 
rate, is the continual replanting rate of the new plants, is the proportion for new susceptible 

plants, is the removal rate occurs for sanitation, is the removal rate for death, and 1 is either the 

harvest time or the end of reproductive lifetime of plants.  
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The extended forms of model (1.1) have been extensively studied, see [5]-[9] and the references 
therein. Meng and Li [7] extended model (1.1) by implementing continuous cultural control strategy 
and impulsive cultural control strategy and obtained 

  
( ) ( ) ( ) ( ) ( ), ,

1 ( )
( ) ( ) ( ) ( ) ( ), ,

1 ( )
( ) ( ) , ,
( ) (1 ) ( ), ,

dS t S t I t
S t I t t n

dt S t

dI t S t I t
d I t t n

dt S t

S t S t t n

I t r I t t n

                       (1.2) 

 
where is a fixed positive constant and denotes the period of the impulsive effect, 1,2, ,n  

and 0 1.The existence and stability of disease-free equilibrium and positive equilibrium are 
studied, and, from the Floquet's theorem and the small amplitude perturbation, sufficient conditions 
under which the infected plant free periodic solution is locally stable are obtain.  
Model (1.2) ignores the infectives deriving from the infective cuttings and the reversion of the 
infected plants. For the crop planted from the cuttings taken form a previous one, the infected cuttings 
may be healthy due to reversion. van den Bosch et al. [5] extended model (1.1) to 

 
( ) (1 ) ( ) (( )(1 ) ( ) ( ) ( ),

(1 ) ( ) ( )
( ) (1 )(1 ) ( )(1 ) ( ) ( ) ( ) ( ),

(1 ) ( ) ( )

dS t r p I t S t
S t I t S t

dt p I t S t

dI t r p I t
S t I t I t

dt p I t S t

            (1.3) 

 
where is the reversion probability of the cuttings from infected plants, the infected cuttings are 
visually or using diagnostic methods, discarded with probability p . They obtained a threshold 
parameter 0R , determining the existence of a unique positive equilibrium, and found that the 
development of new and improved disease control methods for viral diseases of vegetatively 
propagated staple food crops ought to take evolutionary responses of the virus into consideration, and 
not doing so will lead to a risk of failure, which can result in considerable economic losses and 
increased poverty. In [5], van den Bosch et al did not study the qualitative properties of model (1.3) 
and only verified the stability of the positive equilibrium by numerical simulations. 
Many plant diseases, such as chlorotic leaf distortion of sweet potato [10], citrus black spot [11], 
colletotrichum gloeosporioides [12], alternaria alternata [13] et al., possess latent period, i.e. the 
time elapsed between exposure to a pathogenic organism, and when symptoms and signs are first 
apparent. The earliest plant disease model is due to [14], where van der Plank used a delay differential 
equation to represent the density of host tissue first infected. Unfortunately, the delay differential 
equations are difficult to analyze [15, 16] and, despite widespread adoption of discrete time 
approximations to van der Plank's model in early simulations of plant disease [17, 18] and a number 
of often subtle mathematical analysis that followed [19]-[22], the model is now rarely used in 
theoretical studies [23]. However, it is so influential and still of significant historical interest. We use 
a nonnegative parameter to denote the latent period of the plant disease and formulate the delay 
differential model 
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( ) (1 ) ( ) ( )(1 ) ( ) ( ) ( ),
(1 ) ( ) ( )

( ) (1 )(1 ) ( )(1 ) ( ) ( ) ( ) ( ).
(1 ) ( ) ( )

dS t r p I t S t
S t I t S t

dt p I t S t

dI t r p I t
S t I t I t

dt p I t S t

       (1.4)  

For all 0 , Zhang and Suo [24] proved that the disease-free equilibrium of model (1.4) is a critical 
equilibrium with a zero eigenvalue of (algebraic) multiplicity one when 0 1R . Then, they 
investigated the stability and the existence of steady-state bifurcation of model (1.4) near the 
non-hyperbolic disease-free equilibrium. In the present paper, we analytically investigated how the 
time delay affects the dynamical behaviors of model (1.4) near the positive equilibrium for all 0 . 
The remainder of the paper is arranged as follows: Sections 2 discusses the existence and stability of 
the positive equilibrium, and the existence of Hopf bifurcation; Section 3 estimates the bound of time 
delay, and the positive equilibrium remains stable when the delay  is smaller than it; Section 4 
investigates the direction of the Hopf bifurcation; Section 5 performs numerical simulations to 
support the qualitative results and the last section makes the conclusions. 
2. Existence and Stability of Equilibria 
We adopt van den Bosch's assumptions on the parameters as 0 , , 1,p  , , , 0.   
We introduce 

2

0
(1 )(1 )(1 ) .

( )
r p

R  

 
Theorem 2.1. [24] If 0 1R , (1.4) only has a disease-free equilibrium 0E and if 0 1R , (1.4) has a 

unique positive equilibrium *E  except for the disease-free equilibrium 0E , 

where

2 * *
1 1 0 2* *

*
2

4 (1 )(1 )(1 ) ( ),  
2 ( )(1 )

a a a a p r S S
S I

a S p

* * *
0 ( ,0),  ( , ),E E S I 2 2

1 2,  ( ),a p p p a p

0 ( 1)( ( 1) )( ). a p r r  

Theorem 2.2. [24] For 0 . I f 0 1R , the disease-free equilibrium 0E is stable, while unstable if 

0 1R . 

Theorem 2.3. [24] For all 0 . If 0 1R , the disease-free equilibrium 0E  is asymptotically stable; 

If 0 1R and 0  , the disease-free equilibrium 0E  is unstable; If 0 1R  and 1 0k , the 

disease-free equilibrium 0E  is unstable; If 0 1R and 1 0k , the disease-free equilibrium E0 is 

asymptotically stable, where  

3

1 0(1 )(1 )(1 ) ( ) ( ) ,( )k r p p 0 ((( 1) (1 ) )p p r  

(1 ) )p p ，and 0 is a positive number. 

To discuss the analytical properties of model (1.4) when 0 , we first transfer it to the origin by 
* *

1 2,  ,x S S x I I and get 

( ) ( ) ( ) ( ( ), ( )),dx t
Ax t Bx t F x t x t

dt
                             (2.1) 
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F
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I p S p x t I x t S
1 2

.
( ) ( )x t x t

 

The characteristic equation of the linear part of  Eq. (2.1) has the form 
2

1 2 1 2( ) 0,p p e q q                                            (2.2) 

where 
* *

2
1 2* *

* * * *
1 2

2 , ( ) ,

( ),       ( ) .

hS h S
p h p h h

I I

q I S q I S

 

Theorem 2.4. For 0 . If 1 1 2 20,  0p q p q and 0 , the positive equilibrium *E is a 

stable note; If 1 1 2 20,  0p q p q and 0 , the positive equilibrium *E is a stable focus; 

If 2 2 0p q , the positive equilibrium *E  is a saddle; If 1 1 0,p q 2 2 0 p q and 0 , the 

positive equilibrium *E is an unstable note; If 1 1 0p q  and 0 ,the positive equilibrium *E is an 

unstable focus; If 1 1 0p q  and 2 2 0p q , the positive equilibrium *E is a critical point 

possessing a pair of purely imaginary eigenvalues, and a Hopf bifurcation arises when the two 

eigenvalues cross through the imaginary axis, where 2
1 1 2 2( ) 4( ).p q p q  

In the following discussion, we suppose *E is stable when 0 . It is can be verified 
that 2 2 0p q , which makes model (1.4) do not possess zero singularity of co-dimension one or 
more for all 0 . Eq. (2.2) has a pair of purely imaginary roots , 0,iy y  if and only if the 
following equations hold 

2
2 1 2

2 1 1

cos( ) sin( ) ,
sin( ) cos( ) .

q y q y y y p

q y q y y p y
                                                (2.3) 

 
Adding up the squares of the two equations yields 

4 2 2 2 2 2
2 1 1 2 2(2 ) 0.y p q p y p q                                             (2.4) 

 
By the relationship between the roots and the coefficients of quadratic function, we have 
Lemma 1. If  2 2 2 2 2 2

2 2 2 2 2 1 10  0,  2 0p q or p q p q p  Eq. (2.4) has a unique positive root; If 

2 2 2 2
2 2 2 1 10,  2 0p q p q p and 2 2 2 2 2

2 1 1 2 2(2 ) 4( ) 0p q p p q , Eq. (2.4) has two positive 

roots (counting the multiplicity); If 2 2 2 2 2
2 1 1 2 2(2 ) 4( ) 0p q p p q  

or 2 2 2 2 2
2 1 1 2 2(2 ) 4( ) 0,p q p p q 2 2

2 2 0,p q  2 2
2 1 12 0,  p q p  Eq. (2.4) has no root.  
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The third case of Lemma 1 implies that the positive equilibrium *E  remains stable if 

2 2 2 2 2
2 1 1 2 2(2 ) 4( ) 0,p q p p q  or 2 2

2 1 12 0p q p , 2 2
2 2 0,p q 2 2 2

2 1 1(2 )p q p  
2 2
2 24( ) 0.p q  

Without losing generality, we assume that Eq. (2.4) has a unique positive root, 
and denote it as 0y . Eliminating sin( 0y ) from Eq. (2.3), yields 

2 2
2 0 2 1 1 0

0 2 2 2
2 1 0

( )cos( ) .q y p p q y
y

q q y
 

For the sake of convenience, we denote 
2 2

2 0 2 1 1 0
2 2 2

0 2 1 0 0

( )1 2arccos , 0,1,2, .{ }j

q y p p q y j
j

y q q y y
            （2.5） 

Theorem 2.5. If 2 2 2
0 2 1 12 2 0,y p q p  (1.4) undergoes Hopf bifurcations at the positive 

equilibrium *E when ,  0,1,2, .j j   

Proof. Differentiating Eq. (2.2) with respect to  leads to 

1 1 1 2 1 22 ( ( )) ( ),[ ]d
p q q q e e q q

d
 

which gives 
2

1 2 2
2 2 2

1 2 1 2

.
( ) ( )

( ) p qd

d p p q q
 

Let 0 ,  jiy . We have 

0

2 4 2
1 2 0 2

, 2 2 2 2 2 2 2 2
0 2 0 0 1 2 1 0

4 2 2
0 2 2

2 2 2 2
0 2 1 0

1
( )

,
( )

{( ) | } ( )

                       

jiy

p y qd

d y p y y p q q y

y q p

y q q y

e

         (2.6) 

where {}e is the real part of . 

Noticing that 2 2 2 2 2
2 0 0 1 1

4
2 0p 2( ).q y y p q p we have  

0

2 2 2
1 0 2 1 1

, 2 2 2
2 1 0

2 2 .{( ) | }
jiy

y p q pd

d q q y
e  

Then, sgn
1

0,
d{ {( ) | }} 0
d jiye  if 2 2 2

0 2 1 12 2 0,y p q p where sgn is the signum function. 

By use of the bifurcation theory [25]-[27], Hopf bifurcations undergo at ,  0,1,2, .j j □    

 

3. Estimation of the Delay to Preserve Stability 

In the present section, we estimate the length of the delay for the positive equilibrium *E keeps stable 
if is smaller that it. 
Lemma 2. (Nyquist criterion) If L is the arc length of a curve encircling the right half-plane, the 

curve ( )jP L will encircle the origin a number of times equal to the difference between the number of 

poles and the number of zeros ( )jP L in the right half-plane. 

We consider the linear part of Eq. (2.1) in 2([ , ), )C  with the initial values
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( ) ( ),  1,2.i ix i  

Taking Laplace transform on Eq. (2.1) leads to 
( ) (0) ( ) [ ( ) ( )],sX s AX s e B X s K s                  (3.1) 

where 1 2( ) ( ( ), ( )) ,TX s x s x s 1 2(0) ( (0), (0)) ,T
0

( ) ( )dstK s e x t t  and 1( ),x s  2 ( )x s are the 

Laplace transforms of 1 2,x x respectively. 

Solving Eq. (3.1), we obtain 

2
( , )( ) ,
( , )
s

x s
G s

 

where 
* *

2 2 1 1 2
* * *

1 2 1 2
2

1 2 1 2
0

( , ) ( (0) (0)( ) (0)) (( ( ) ( ) )

             ( (0) (0)) ( ( ) ( ))),

( , ) ( ),

   ( ) ( ) , 1,2.

s

s

s

i i

s s h h e k s I k s S s

I I k s S k s

G s s p s p e q s q

k s e x s ds i n

 

Following along the lines of [28] and using Nyquist criterion, it can be shown that 
the conditions for local asymptotical stability of *E are given by 

0{ ( , )} 0,m G iy                                                                           (3.2) 

0{ ( , )} 0,e G iy                                                                           (3.3) 

where 0( ( , )),m G iy is the imaginary part of 0( , )G iy . Clearly, we have the following 

equations 

1 0 1 0 0 2 0
2

2 0 2 0 1 0 0

cos( ) sin( ),

cos( ) sin( ),

p y q y y q y

p y q y q y y
 

By use of Eq. (3.3), we have 
2
0 1 2 2| | 0 | | | |  0y q y q p . 

Let
2

1 1 2 2| | 4(| | | |)
.

2
q q q p

y  Then, we have 0 .y y   

Further, by virtue of Eqs. (3.2-3.3), we get 

2 2
0 0 1 0

0 0

1 0 1 0 0 2 0

cos( ) sin( ),

cos( ) sin( ),

p q
y y q y

y y

p y q y y q y

 

which leads to  

1 2
1 0 0 2 1 1 0

0

1 2 1 2
1 0

0 0

( )(cos( ) 1) ( )sin( )

                      .

p q
q y y q p q y

y

p p p q
q y

y y

                                (3.4) 

Noticing that 
2 2

0 01 cos( ) , sin( ) ,
2

y
y y y 
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we have  

2 21 2
1 0 0 1 1 2

0

( )(cos( ) 1) | |,p q
q y y y p q q

y
                               (3.5) 

2 1 1 0 2 1 1( )sin( ) | |q p q y q p q y                                    (3.6) 

and 

1 2 1 2
1 0 1 1 2 2

0 0

| |( | | | |).p p p q
q y p q p q

y y
                         (3.7) 

On substituting Eq. (3.5- 3.7) into Eq. (3.4) yields 
2

1 2 3,l l l  

where 2
1 1 1 2 2 2 1 1 3 1 1 2 2| |,  | | ,  | |( | | | |).l y p q q l q p q y l p q p q  

Then, the positive equilibrium *E is asymptotically stable if 
2

2 2 1 3

1

4
.

2
l l l l

l
 

4. Direction of Hopf Bifurcation 

It is interesting to determine the direction, stability and period of the periodical solutions bifurcated 
from the positive equilibrium *E . In this section, following the idea of Hassard et al. [29], we 
investigate the properties of model (1.3) by use of the normal form and the center manifold theory 
[25]-[27]. 

First, rescale the time by /t t  to normalize the delay of Eq. (2.1), and let 
( ) ( ),i iu t x t ,j where  is a small parameter. For convenience, we denote 

( )iu t as ( ),  1,2,ix t i respectively. Then, in 2([ 1, ), )C C , Eq. (2.1) can be rewritten as the 
following functional differential equation 

( ) ( ) ( , ),t tx t L x F x                                                            (4.1) 

 
where ( )tx x t C and : ,   :L C F C are respectively defined by 

* *
2 1 2 1

1 2* * *
2 1

* *
2 1 2 1

1 2* * *
2 1

    ( ) ( )( (0) ( 1)),

( (0) (0))( (0)( 1) (0)) ( 1) ( 1)
(( (0) )(1 ) (0) )

( , ) ( )
( (0) (0))( (0)( 1) (0)) ( 1) ( 1

(( (0) )(1 ) (0) )

j

j

L A B

h S I p

I I p S
F

h S I p

I I p S

,
)

 

and 1 2( ) ( ( ), ( )) .T C   

By the Riesz representation theorem, there exists a bounded variation matrix value function ( , ) such 
that 

0

1
( , ) ( ), ,L d C  

where [ 1,0] . 
In fact, we can choose 

( , ) ( )( ( ) ( 1)).j A B  

Next, for 1 2([ 1, ), )C , we define 
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0

1

,                [ 1,0];
( )

( , ) ( ),   0.

d

dA

d s s

 

and 
0,                [ 1,0];

( )
( , ),     0.

R
F

 

Then, Eq. (4.1) is equivalent to 
 ( ) ( ) ,t t tx A x R x                                                             (4.3) 

where ( )tx x t . 

For * 1 2*([0, 1), )C C , we define 

*

0

1

( ) ,                [ 1,0];
(0)

( ) ( ,0),   0.

d s
s

dsA

t d t s

 

where 2* is the space of all row 2-vectors. 
Define the bilinear form between C  and *C  

 
0

1 0
( ), ( ) (0), (0) ( ) ( ) ( ) ,s d d                                  (4.4) 

               

where ( ) ( ,0) , and a b  means
1

n

i i

i

a b .  

For the sake of computation, we rewrite *(0),  (0)A A as *,  A A respectively. Then, the 
operators A and *A are adjoint, and 0 jiy are the eigenvalues of them. We first need to compute the 

eigenvectors of A and *A corresponding to 0 jiy and 0 jiy , respectively. 

Let 0( ) (1, ) jiyTq e be the eigenvector of A corresponding to 0 jiy  . It follows from the definition 
of A that 

0
0 2 2

1
( ) 0,( )jiy

iy I A Be  

where 2 2I is the unit matrix of 2 2 . Then, we have 
0

0

*
0

*
*

*

.
j

j

iy

iy

iy S e h

S h
S e

I

 

Similarly, let 0* *( ) (1, ) jiy s
q s D e  be the eigenvector of *A corresponding to 0 jiy , where D is a 

constant will be determined in the following. Then, we have 
0*

0 2 2(1, )( ) 0,jiy
iy I A Be  

and further have 
0

0

*
* 0

*
.

j

j

iy

iy

iy h S e

h I e
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In order to guarantee *( ), ( ) 1q s q , which leads to 

*

1 ,
1

D
K

 

where 
0

0 0

0 0

0 0

*
* * * 2

* * * *

* * * * *
0 0

( ( )
( )( )

2 )     ( ).

j

j j

j j

j j

iy
iy iy

iy iy

iy iy

I e
K S I e S e

h I e S I e S h

hS S iy S h S e I e iy h n

 

In the remainder of this section, using the same notations as in [28], we compute the coordinates to 
describe the center manifold 0C at 0 . Let tx be the solution of Eq. (4.3) at 0 , and define 

*( ) , , ( , ) ( ) 2 { ( ) }.t tz t q x W t x z t qe  

On the manifold 0C , we have 

( , ) ( ( ), ( ), ),W t W z t z t                                                                  (4.5) 
where 

2 2 3

20 11 02 30( , , ) ( ) ( ) ( ) ( ) ,
2 2 6
z z z

W z z W W zz W W                           (4.6)  

z and z are local coordinates for 0C in the direction of *q and *q . Note that W is real if tx is, we shall 
deal with the real solutions only. Since 0 , we have 

*
0

*
0 0

( ) ( ) (0, ( , , ) 2 { })

     : (0) ( , ),

j

j

z t iy z t q F W z z zq

iy q F z z

e
 

where 
2 2 3 2

20 11 02 30 21( , ) .
2 2 6 2
z z z z z

g z z g g zz g g g  

It follows from Eqs. (4.5-4.6) that  

0 0

0 0

0 0

2 2

20 11 02

2 2
1 1 1

20 11 02

2 2
2 2 2

20 11 02

( ) ( , ) 2 { }

= ( ) ( ) ( ) (1, ) (1, )
2 2

( ) ( ) ( )
2 2

( ) ( ) ( )
2 2

j j

j j

j j

t

iy iyT T

iy iy

iy iy

x W t zq

z z
W W zz W e z e z

z z
W W zz W e z e z

z z
W W zz W e z e z

e

 

By virtue of Eq. (4.2), we get 
*

* *
2 1 2 1

1 2* * *
2 1*

* *
2 1 2 1

* * *
2 1

( , ) (0) (0, ( , , ) { })

( (0) (0))( (0)( 1) (0)) ( 1) ( 1)
(( (0) )(1 ) (0) )

(1, )
( (0) (0))( (0)( 1) (0))

(( (0) )(1 ) (0) )

t t t t
t t

t t

j

t t t t

t t

g z z q F W z z zq

h S x I x x p x
x x

I x I p x S
D

h S x I x x p x

I x I p x S

e

1 2( 1) ( 1)t tx x
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2 2

* 1 1 1 2
20 11 02* *

* * 2 2
1 1 1

20 11 02* * *

2 2
2 2 2

20 11 02

2(1 ) (0) (0) (0)
(1 ) 2 2

( ( 1)) (0) (0) (0)
( (1 ) ) 2 2

    [ (0) (0) (0)

  

]
2

 

2

{ [ ]

[ ]

j

h z z
D W W zz W z z

I p S

h S I p z z
W W zz W z z

I S p I

z z
W W zz W z z

 

0 0

0 0

* 2 2
2 2 2 2

20 11 02* * *

2 2
1 1 1

20 11 02

2 2
2 2 2

20 11 02

* *

2 (1 )   (0) (0) (0)
( (1 ) ) 2 2

  ( 1) ( 1) ( 1)
2 2

   ( 1) ( 1) ( 1)
2 2

2 ( 2 ( 1)  

[ ]

[ ]

[ ]

j j

j j

iy iy

iy iy

hS p z z
W W zz W z z

I S p I

z z
W W zz W ze ze

z z
W W zz W ze ze

h S I p 2 2
1 1 1 2

20 11 02* * 2 *

2 2
2 2 2

20 11 02

) (0) (0) (0)
( (1 ) ) 2 2

   [ (0) (0) (0) ] .
2 2
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Balancing above equation yields 

0
* * * 2
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*
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1 2 2 2

20 20 20 11* * *

1 1
20 11

4 1 ( ( 1))(1 ) ( (0) (0)) ( (0) (0)
(1 ) 2 ( (1 ) )

4 (1 )      (0) (0)) ( (0) (0))
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     ( ( 1) ( 1)
2
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I p S I S p I

hS p
W W W W
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Obviously, we obtain 
*

0

*
0 0

2 { (0) ( )},          [ 1,0);

2 { (0) ( )} ,         =0.
t

AW q F q
W x zq zq

AW q F q F

e

e
               (4.7) 

which can be rewritten as 
( , , ),W AW H z z                                                             (4.8) 

where 
2 2

20 11 02( , , ) ( ) ( ) ( ) .
2 2
z z

H z z H H zz H                                  (4.9) 

On the center manifold 0C , we have 
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11 02 0
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By means of Eq. (4.7), it can be obtained that 

0 20 20 11 11(2 ) ( ) ( ),   ( ) ( ), ,jiy A W H AW H            (4.10) 

and further obtained that 
*

0
2 2 2

20 11 02 21

2 2 2

20 11 02 21
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( ) ( )
2 2 2

 ( ) ( ).
2 2 2
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Balancing the coefficients of above equation yields 

20 20 02

11 11 11

20 02 20

( ) ( ( ) ( )),
( ) ( ( ) ( )),
( ) ( ( ) ( )).

H g q g q

H g q g q

H g q g q

 

By Eq. (4.8), the following equation is obtained 

20 0 20 20 0 20 20 20( ) 2 ( ) ( ) 2 ( ) ( ) ( ).j jW iy W H iy W g q g q         (4.11) 

Then, we have 

0 0 0220 02
20 1

0 0

(0) (0)( ) ,
3

j j jiy iy iy

j j

g q i g q i
W e e e E

y y
            (4.12) 

where 2
1E is a constant vector. 

By the second equation of Eqs. (4.10), we derive 
0 0

11 11 11( ) (0) (0) .j jiy iy
W g q e g q e  

Then, we get 

0 011 11
11 2

0 0

(0) (0)( ) ,j jiy iy

j j

ig q ig q
W e e E

y y
              (4.13) 

where 2
2E is a constant vector. 

In the sequel, we shall determine the vectors 1E and 2E . By Eq. (4.8), we have 
0

20 0 20 201
( ) ( ) 2 (0) (0)jd W iy W H  

and 
0

11 111
( ) ( ) (0).d W H                                                   (4.14) 

By Eqs. (4.8-4.9), we get 
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and 

* * *
2

* * * * * * * *

11 1

* * *
2

* * * * * *

1 11

* *

4 2 ( ( 1)) 4 (1 ){ } 2

(0)

{ }
(1 ) ( (1 ) ) ( (1 ))

4 2 ( ( 1)) 4 (1 ){ } 2 { }
(1 ) ( (1 ) ) (

(0

(1

(0) .

))

) j

h h S I p hS p

I p S I S p I I S I p

h h S I p hS p

I p S I S p I I S I

H g q g q

p

e e

e e

.
         (4.15) 

Note that 
0
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0 2 2 1
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we arrive at 
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By the definition of ( ) , we derive 
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Similarly, substituting Eqs. (4.13-4.15) into Eq. (4.14) leads to 
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From Eqs. (4.12-4.13,4.16-4.17), we can calculate 21g  and derive the following values 
2

2 02 21 1
1 11 20 11 2

0

1 2
2 1 2

0

| | { (0)}(0) 2 | | , ,
2 3 2 { ( )}

{ (0)} { ( )}
{ (0)}, .
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j j

j

j
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c g g g

y

c
b c T

y

e

e

m m
e

         (4.18) 

These formulas give a description of the Hopf bifurcation periodic solutions of Eq. (4.1)  at j on 
the center manifold. On the basis of the above discussion, we have the following results. 
Theorem 4.1. In Eq. (4.18), the sign of ·2 determines the directions of Hopf bifurcation: if 2 0k (or 

2 0k ), the Hopf bifurcation is supercritical (or subcritical)and the bifurcating periodical solutions 

exist for j  (or j ); 2b determines the stability of the periodical solution: the bifurcating 

solutions are stable (or unstable) if b2 < 0 (or b2 > 0) and T2 determines the period of the bifurcated 

periodical solutions: the period increases (or decreases) if 2 0T  (or 2 0T ). 

5  Numerical Simulations 

In this section, by using the "dde23" package in Matlab, we present some numerical results associated 
with model (1.4) for some particular values of the parameters given in Table. 1. For ecological 
justification behind the choice of numerical values and related information, interested readers may 
consult the literature [5] and the references. Choosing 0.07 , 0.0064p , we 
obtain 0 21.60880362R .Then, model(1.4) has a unique positive equilibrium * 0.05223044016S  

* 6.476321355I .It follows form the formulas in Theorem 4.1 that 0 38.21688903 , 

2 0.0002645313913b  2 0.5430753270,k and 2 0.005158896720T , which means Hopf 
bifurcations occur at 0 when is through the critical values 0 . Fig. 1 exhibits the positive 
equilibrium is stable for 35 , and Fig. 2 shows that Hopf bifurcation occurs at the positive 
equilibrium for 38.22 .       

Table 1. Model parameters, their interpretation and values. 
Parameter Description Value 
  harvest rate 0.002 
  planting rate 0.015 
  fraction planted from in vitro propageted, virus free, material (0, 1) 
p  the probability of detecting an infected cuttings (0, 1) 
  reversion ratio 0.08 
  roguing rate 0.0003 
  transmission rate 0.0064 
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Figure 1. 0 035 ,  R 1    . The solutions of (1.4) tends to the 

positive equilibrium *E . 
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Figure 2. 0 038.22 ,  R 1    . Hopf bifurcation occurs at the 

positive equilibrium *E . 

6. Conclusions 

By analyzing the transendental characteristic equation, we derived stability conditions for the positive 
equilibrium in terms of the time delay . 
When 0 , the positive equilibrium *E  has the following properties: 

If 1 1 2 20,  0p q p q  and 0 , *E is a stable note; 

If 1 1 2 20,  0p q p q  and 0 , *E  is a stable focus; 

If 2 2 0p q , *E  is a saddle; 

If 1 1 2 20,  0p q p q  and 0 , *E is an unstable note; 

If 1 1 0p q and 0 , *E is an unstable focus. 

If the positive equilibrium *E is stable when 0 , then, for 0 , it is always stable if one of 
the following conditions holds: 

2 2 2 2 2 2 2
2 1 1 2 2 2 1 1

2 2 2 2 2 2 2
2 2 2 1 1 2 2

  (2 ) 4( ) 0;2 0,

   0  and  (2 ) 4( ) 0.

p q p p q p q p

p q p q p p q
 

By virtue of Nyquist criterion, the length of the delay , which preserves the stability of the positive 
equilibrium is estimated, i.e. the positive equilibrium is asymptotically stable for . 

Using the method developed in [28]-[29], the stability, the direction and the periodic of bifurcating 
period solutions are discussed at ,  0,1,2, .j j . The existence of the period orbits suggest that 
the latent period brings out the periodic oscillations of both the numbers of the susceptible plants and 
the infected ones, which help us to understand why some diseases outbreak periodically in infection 
period. 
Employing the parameter values presented in [5] and the references, we carried out some simulations 
to support our qualitative results. Choosing 0.07 , 0.0064p , we obtain 

0 38.21688903 , 2 0.5430753270,k and 2 0.0002645313913b , which implies that a stable 
supercritical Hopf bifurcation occurs at the positive equilibrium *E when 38.22 , and *E is stable 
when 38.22 . Seen from Fig. 1 that the number of the susceptible plants and the infected ones 
oscillation near *E and then tend to it as t increasing when 35 . Fig. 2 shows that the number of the  
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susceptible plants and the infected ones periodically oscillation around *E when 38.22 , and Hopf 
bifurcation occurs at *E . 
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