
International Journal of Science Vol.2 No.11 2015                                                             ISSN: 1813-4890 

 

22 

 

Robust positive real controller design for a class of two dimensional 
discrete systems 

Jiangtao Dai 

Fundamental Science Department, North China Institute of Astronautic Engineering, Langfang 
065000, China 

daijiangtao2008@163.com 

Abstract 

This paper considers the problem of positive real control for uncertain 2-D discrete systems in 
the General Model. The parameter uncertainty is assumed to be norm-bounded. The purpose 
is the design of state feedback controllers such that the closed-loop system is stable and the 
closed-loop transfer function is extend- ed strictly positive real. In terms of a linear matrix 
inequality, a condition for the solvability of the problem is obtained, and a desired state 
feedback controllers is given. Finally, we provide a numerical example to demo- nstrate the 
applicability of the proposed approach. 
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1. Introduction 

Two-dimensional (2-D) discrete systems have received much attention during the past decades since 
2-D systems have extensive applications in image processing, seismographic data processing, 
thermal processes, water stream heating, and other areas [9]. Different kinds of 2-D models, such as 
2-D Roesser models and 2-D Fornasini- Marchesini models [21] etc., have been proposed. A great 
number of fundamental notions and results of one dimensional (1-D) discrete systems were 
generalized to 2-D discrete systems [23]. Since the introduction of the general state space model of 
2-D systems (2-D GM) in [23], a lot of research topics, such as controllability [10], minimum energy 
control [11], internal stability [12], computation of 2-D eigenvalues and the transfer function matrix 
[13] related to 2-D GM have been studied in the literature. 

On the other hand, the concept of positive realness has played an important role in studying control 
and system theory [14]. The study of positive real control problem is motivated by robust and 
nonlinear control. If uncertainty or nonlinearity can be characterized by a positive real system, it is 
well known that the positive realness of a loop transfer function will guarantee the over all stability of 
a feedback system [15]. The problem of positive real control has been studied, which is concerned 
with the design of controllers such that the closed-loop system is stable and the closed-loop transfer 
function is positive real [16]. A solution to this problem for a known linear time-invariant system 
involves solving a pair of Riccati inequalities [6], while for uncertain systems, the solution can be 
characterized by solving certain linear matrix inequalities (LMIs) [17].Very recently, the problem of 
positive real control for 2-D discrete systems described by Roesser models, Fornasini-Marchesini 
model was considered in [23,24], where a state feedback controllers was designed such that the 
resulting closed-loop system is asymptotically stable and the closed-loop transfer function is positive 
real. However, the positive real control for 2-D GM systems has not been investigated. 

In this paper, we study the problem of positive real control for 2-D discrete systems in the General 
model with parameter uncertainties. The parameter uncertainty is assumed to be unknown but norm 
bounded. The purpose is to design a state feedback controllers such that the closed-loop system is 
asymptotically stable while the associated closed-loop transfer function is extended strictly positive 
real (ESPR). A sufficient condition ensuring a 2-D discrete system to be ESPR property is proposed. 
Based on this, a condition for the solvability of the positive real control problem is obtained in terms 
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of an LMI, and a desired state feedback controller is given when the proposed LMI is feasible. Finally, 
an illustrative example is provided to demonstrate the applicability of the proposed methods. 

Notation. Throughout this paper, for Hermitian matrices X and Y  , the notation X Y  (respectively, 
X Y ) means that the matrix X Y  is positive semi-definite (respectively, positive definite). I  is 
the identity matrix with appropriate dimension. The superscript “ T ” “ T ” “  ”represents the 
transpose, inverse transpose, and the complex conjugate transpose. Matrices, if their dimensions are 
not explicitly stated, are assumed to have compatible dimensions for algebraic operations. 

2. Problem Statement and Preliminaries 

 Consider an uncertain 2-D discrete-time system described by the following general Model [22]: 

 ： 1 1 2 2 0 0( 1, 1) ( ) ( 1, ) ( ) ( , 1) ( ) ( , )x i j A A x i j A A x i j A A x i j              

1 1 2 2 0 0( ) ( 1, ) ( ) ( , 1) ( ) ( , )B B w i j B B w i j B B w i j                                 (1a)  

( , ) ( , ) ( , )z i j Cx i j Dw i j                                          (1b) 

where ( , ) nx i j R is the local state vector, ( , ) qw i j R is the exogenous input, ( , ) qz i j R  is the 

controlled output, where 1 2 0 1 2 0, , , , , ,A A A B B B C  and D are known real constant matrices with 

appropriate dimensions. 1 2 0 1 2, , , ,A A A B B     and 0B  are time-invariant matrices representing 

nom-bounded parameter uncertainties, and are assumed to be of the form:  

 
1 2 0 1 2 01 2 0 1 2 0 A A A B B BA A A B B B MF N N N N N N                 (2) 

where g lF R  is an unknown real matrix satisfying    
TF F I                                                                   (3) 

and 
1 2 0 1 2

, , , , ,A A A B BM N N N N N and 
0BN are known real constant matrices with appropriate 

dimensions. 

The nominal 2-D discrete-time system of (1)can be written as  

:  1 2 0( 1, 1) ( 1, ) ( , 1) ( , )x i j A x i j A x i j A x i j          

1 2 0( 1, ) ( , 1) ( , )B w i j B w i j B w i j                                             (4a) 

( , ) ( , ) ( , )z i j Cx i j Dw i j                                                 (4b) 

Then, the transfer function of the 2-D discrete-time system (4)can be written as 
1

1 2 1 2 1 1 2 2 0 1 1 2 2 0( , ) ( ) ( )G z z C z z I z A z A A z B z B B D                               (5) 

We define the concept of positive realness for 2-D GM systems in the following. 

Definition 2.1. 

The 2-D discrete-time system (4)is said to be positive real(PR) if its transfer function 1 2( , )G z z is 

analytic in 1 2| | 1,| | 1z z  and satisfies *
1 2 1 2( , ) ( , ) 0G z z G z z   for 1 2| | 1,| | 1z z  . 

The 2-D discrete-time system (4)is said to be strictly positive real(SPR) if its transfer function 

1 2( , )G z z is analytic in 1 2| | 1,| | 1z z  and satisfies 1 2( , )j jG e e  1 2*( , ) 0j jG e e    for 1 2, [0, 2 )   . 

The 2-D discrete-time system (4)is said to be extended strictly positive real(ESPR) if its SPR and 
( , ) ( , ) 0TG G      . 

We end this section by presenting Lemmas that will be essential in the proof of our main results in the 
next section. 

Lemma 2.1. [19]Let , , ,A L E F and P  be real matrices of appropriate dimensions with 0P  and 

F satisfying TF F I .Then, for any scalar 0  such that 0TP LL  ,we have  



International Journal of Science Vol.2 No.11 2015                                                             ISSN: 1813-4890 

 

24 

 

1 1 1( ) ( ) ( )T T T TA LFE P A LFE A P LL A E E        . 

Lemma 2.2. [20]Let , ,L E F and Q  be real matrices of appropriate dimensions with Q  satisfying 
TQ Q ,then ( ) 0TQ LFE LFE    for all F satisfying TF F I ,if and only if there exist a scalar 

0  such that  
1 0T TQ LL E E      

Lemma 2.3. [18] The 2-D linear discrete-time system (4)is asymptotically stable if there exist 
matrices 1 20, 0P P   and 0P   such that the following LMI holds: 

1 1 0 1 1 2 1 0

2 1 2 2 1 2 0

0 1 0 2 0 0

0

T T T

T T T

T T T

A PA P P P A PA A PA

A PA A PA P A PA

A PA A PA A PA

   
   
  

                         (6) 

3. Main Results 

The following theorem provides the positive real lemma for the 2-D discrete systems in the General 
model. 

Theorem 3.1.The 2-D discrete-time system (4) is asymptotically stable with ESPR if there exist 
matrices 0 10, 0, 0, 0P P P W    and 0V   such that the following LMI holds: 

1 1
1 2 1 0 1 1 1 2 1 0

0 1

2 1 2 2 1 2 0 2 1 2 2 2 0

0 1 0 2 0 0 0 0 1 0 2 0 0

1 1
1 1 1 2 1 0 1 2 1 0

(

)

T
T T T T T T

T T T T T T

T T T T T T

T
T T T T T

T

A PA P
A PA A PA C A PB A PB A PB

P P

A PA A PA P A PA A PB A PB A PB

A PA A PA A PA P A PB A PB A PB

B PB D
C B PA B PA B PA B PB B PB

D W V

 
   

  
   

   

       
   

2 1 2 2 2 0 2 1 2 2 2 0

0 1 0 2 0 0 0 1 0 2 0 0

0

T T T T T T

T T T T T T

B PA B PA B PA B PB B PB W B PB

B PA B PA B PA B PB B PB B PB V

 
 
 
 
 
 

 
 
 
 
    
 

    

          (7) 

Proof: The proof is omitted here for brevity (see [25]). 

Remark1:Theorem1 provides an LMI condition for the 2-D discrete system in the General Model to 
be asymptotically stable and ESPR. 

Definition 3.1. The uncertain 2-D discrete-time system (1)is said to be strongly robustly stable with 
ESPR if there exist matrices 0 10, 0, 0, 0P P P W    and 0V  such that following the LMI shown 

in (16), holds for all admissible uncertainties 1,A 2 ,A 0 1 2, ,A B B   and 0B satisfying (2). 

1 1
1 2 1 0 1 1 1 2 1 0

0 1

2 1 2 2 1 2 0 2 1 2 2 2 0

0 1 0 2 0 0 0 0 1 0 2 0 0

1 1 1 2 1

T
T T T T T T

T T T T T T

T T T T T T

T T T

A PA
A PA A PA C A PB A PB A PB

P P P

A PA A PA P A PA A PB A PB A PB

A PA A PA A PA P A PB A PB A PB

C B PA B PA B P

 
         

           

           

    

 
   

  
   

   

   1 1
0 1 2 1 0

2 1 2 2 2 0 2 1 2 2 2 0

0 1 0 2 0 0 0 1 0 2 0 0

0
(

)

T
T T

T

T T T T T T

T T T T T T

B PB D
A B PB B PB

D W V

B PA B PA B PA B PB B PB W B PB

B PA B PA B PA B PB B PB B PB V

 
    

           

           

 
 
 
 
 
 

 
   
       

    
 

    

     (8) 

Where 

1 1 1A A A    , 2 2 2A A A    , 0 0 0A A A    , 1 1 1B B B    , 2 2 2B B B    , 0 0 0B B B    . 

The following theorem presents a necessary and sufficient condition for system (1)to be strongly 
robustly stable with ESPR. 
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Theorem 3.2. Consider the uncertain 2-D discrete-time system (1).This system is strongly robustly 
stable with ESPR for all admissible uncertainties if and only if there exists a scalar 0   and 
matrices 0, 0, 0, 0X Y Z W    and 0V  such that the following LMI holds. 

1

2

0

1 2 0 1 2 0

1

2

0

1 1

2 2

0 0

1 2 0 1 2 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

( )
0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

0

T T T
A

T T
A

T T
A

T
T T

B

T T
B

T T
B

T

A A A B B B

X Y Z ZC ZA ZN

Y ZA ZN

X ZA ZN

D D
CZ B N

W V

W B N

V B N

A Z A Z A Z B B B MM Z

N Z N Z N Z N N N I




  
 

 
  
         
 

   
   
 

    
     

0

                      (9) 

Proof : (Necessity) Suppose the uncertain 2-D system (1)is strongly robustly stable with ESPR, that is, 
there exist matrices 0 10, 0, 0, 0P P P W    and 0V  such that above  the LMI (8) holds. By 

Schur complements, it follows from (8) that 

0 1 1

1 2

0 0

1

2

0
1

1 2 0 1 2 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

( )
00 0 0 0

0 0 0 0 0

0 0 0 0 0

T T

T

T

T
T

T

T

P P P C A

P A

P A

D D
C B

W V

W B

V B

A A A B B B P














     

  
  
 
 

         
  
 

  
     

 

That is 

1

2

0

1

2

0

0 1 1

1 2

0 0

1

2

0

1
1 2 0 1 2 0

0 0

0 0

0 0
( )

0 0

0 0

0 0

0

T T
T T
A

T
T
AT
T
AT

TT T
B

T
T B

T
T B

P P P C A N
P A N

P A
N

D D
FC B N

W V
N

W B
NV B

M M
A A A B B B P

                                                                  

1

2

0

1

2

0

0

0

TT
A

T
A

T
A

T
B

T
B

T
B

N

N

N

F N

N

N

                                    

 

Therefore, using Lemma 2.2, we have that there exist a scalar 0  , such that  

0 1 1

1 2

0 0

1
1

2

0
1

1 2 0 1 2 0

0 0 0 0
0 0

0 0 0 0 0
0 0

0 0 0 0 0
0 0

( )
0 00 0 0 0

0 0
0 0 0 0 0

0 0
0 0 0 0 0

T T
T

A
T

T

T
T

T

T

P P P C A N
P A

P A

D D
C B

W V

W B

V B
M M

A A A B B B P

  



  
          
     
     

                     
      
     

               

1 1

2 2

0 0

1 1

2 2

0 0

0

0 0

TT T
A

T T
A A

T T
A A

T T
B B

T T
B B

T T
B B

N

N N

N N

N N

N N

N N

   
   
   
   
   
     
   
    
   
    
         

       (10) 

That is  
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1

2

0

1 2 0 1 2 0

0 1 1

1 2

0 0

1 1

2 2

0 0
1

1 2 0 1 2 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

( )
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

0

T T T
A

T T
A

T T
A

T
T T

B

T T
B

T T
B

T

A A A B B B

P P P C A N

P A N

P A N

D D
C B N

W V

W B N

V B N

A A A B B B MM P

N N N N N N I






  
 

 
  
          
 

   
   
 

    
     

               (11) 

Pre-multiplying and Post-multiplying (11) by  1 1 1, , , , , , ,diag P P P I I I I I   and 

setting 1 1 1 1 1
0 1, ,X P P P Y P PP Z P       , the desired result follows immediately. 

(Sufficiency):Suppose that exist a scalar 0  and matrices 0, 0, 0, 0X Y Z W    and 
0V  such that (9)is satisfied .Then ,from(9)it is easy to see that  

0 TMMZ                                                        (12) 

By Lemma 2.1, it can be show that 

1 1

2 2

0 0

1 1

2 2

0 0

1 1

2 2

10 0

1 1

2 2

0 0

T T
T TA A

T T
T T

A A

T TT T
A AT T

T TT T
B B

T TT T
B B

T T
T T
B B

N NA A
N NA A
N NA A

F M Z
B BN N

B BN N
B BN N



                                                                      

T

T TF M

 
 
 
 
 
 
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Let  1 1 1 1, , , , , , ,TX Z XZ Y Z YZ J J diag Z Z Z I I I        

Then, by considering (9) and using Schur complements, we get the following equation. 
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This together with (13) implies that 
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This leads to the following equation. 
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By definition 3.1, it follows that uncertain 2-D system (1)is strongly robustly stable with ESPR for all 
admissible uncertainties. 

4. Robust Positive Real Control 

In this section, we consider the problem of positive real control for uncertain 2-D discrete-time 
system. An LMI design approach will be developed. The uncertain 2-D discrete-time system 

u to be considered in this section is described by the following 2-D general model: 

:
u  1 1 2 2 0 0( 1, 1) ( ) ( 1, ) ( ) ( , 1) ( ) ( , )x i j A A x i j A A x i j A A x i j              

1 1 2 2 0 0( ) ( 1, ) ( ) ( , 1) ( ) ( , )B B w i j B B w i j B B w i j            

1 1 2 2 0 0( ) ( 1, ) ( ) ( , 1) ( ) ( , )L L u i j L L u i j L L u i j            

(14a) 

                             ),(),(),( jiDwjiCxjiz                   (14b) 
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where ( , ) nx i j R is the local state vector, ( , ) mu i j R is the control input, ( , ) qw i j R is the 

exogenous input, ( , ) qz i j R  is the controlled output, where 1 2,L L  and 0L are known real constant 

matrices with appropriate dimensions. 1 2,L L  and 0L  are time-invariant matrices representing 

nom-bounded parameter uncertainties, and are assumed to be of the form 

][][
021021 LLL NNNMFLLL                               (15) 

where g lF R   is an unknown real matrix satisfying (3)and 
1 2
,L LN N and 

0LN are known real constant 

matrices with appropriate dimensions. The remaining matrices are the same as in system (1).It is 
assumed that all the state variables are available for feedback. 

The objective of the robust positive real control is the design of feedback controllers for system 
(22)such that the resulting closed-loop system is strongly robustly stable with ESPR for all admissible 
uncertainties. 

  Now, applying the state feedback controller  

),(),( jiKxjiu                                                      (16) 

to the system (22),we obtain the closed-loop systems 

:
c 1 2 0( 1, 1) ( 1, ) ( , 1) ( , )c c cx i j A x i j A x i j A x i j        

1 1 2 2 0 0( ) ( 1, ) ( ) ( , 1) ( ) ( , )B B w i j B B w i j B B w i j            

),(),(),( jiDwjiCxjiz                                 (17) 

Here, 1 1 1 1 1( ) ( )cA A A L L K      , 2 2 2 2 2( ) ( )cA A A L L K      , 0 0 0 0 0( ) ( )cA A A L L K        

The main result of this section is given in the following theorem. 

Theorem 4.1. Consider the uncertain 2-D discrete-time system (22).There exist a static state feedback 
controller for system (22)such that the resulting closed-loop system is strongly robustly stable with 
ESPR for all admissible uncertains if and only if there exit a scalar  0   and matrices 

0, 0, 0, 0, 0X Y Z W V     and K  such that the following LMI holds. 
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 1 1 2 2 0 0 1 2 0A Z L K A Z L K A Z L K B B B         

][
021002211 BBBLALALA NNNKNZNKNZNKNZN   

Furthermore,in this case, a suitable state feedback controller can be chosen as 
1( , ) ( , )u i j KZ x i j  

Proof: the theorem can be carried out by using a similar approach as in the proof of theorem 2. 

Remark2:Therorem4.1 provides a sufficient condition for the designing a state feedback controller 
which stabilizes the uncertain 2-D discrete system described by the General Model and achieves the 
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extended strictly positive realness property of the closed-loop system. It is worth pointing out that the 
LMI(26) in the Therorem4.1 can be solved efficiently, and no tuning of parameters is required. 

5. Numerical Example. 

 In this section, we give an example to illustrate the effectiveness of the proposed method. 

Consider the 2-D discrete-time system (14) with parameters given by 
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0

0.1 0.2LN  . 

It is required to construct a static feedback controller that stabilizes the given 2-D system while 
ensuring that the resulting closed-loop system ESPR .Now using matlab LMI control toolbox and 
solving the LMI (18), we obtain  

1.9709 0.9571 0.1511 2.1493 0.0726 0.2920 6.8599 1.5726 2.7144

0.9571 1.8199 0.4671 , 0.0726 0.6972 0.3003 , 1.5726 4.5488 2.3991

0.1511 0.4671 0.3171 0.2920 0.3003 0.3106 2.7144 2.3991 7.

X Y Z
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,
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 
 
 
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0.4823 0.0240 0.1130 0.5711 0.0205 0.1106
1.7139 1.6944 3.8699

0.0240 0.1078 0.0519 , 0.0205 0.3346 0.3257 ,
0.2008 0.2171 0.4113

0.1130 0.0519 0.6133 0.1106 0.3257 0.7544

W V K

    
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, 

16.9973   

Therefore, from Theorem 3, there exist a solution to the positive real control problem. Furthermore, a 
desired state feedback controller can be chosen as  

0.1640 0.2411 0.3567
( , ) ( , )

0.0341 0.1103 0.0963
u i j x i j

 
     

 

6. Conclusions. 

This paper has studied the problem of positive real control for 2-D discrete systems in the general 
model. A Necessary and Sufficient Conditions for the solvability of this problem has been proposed. 
A desired dynamic output feedback controller can be constructed by solving a given LMI. 
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