
International Journal of Science Vol.4 No.1 2017 ISSN: 1813-4890

147

Design and Implementation of CAN Frame Bit Disturbance based on
CAN IP Core

Anyu Cheng a, Xiaofeng Meng b, Bingyang Chen c, Dawei Sun d

School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065,
China

achengay@cqupt.edu.cn, bmengxf187@163.com, cchenby@sumarte.com, dsundw@sumarte.com

Abstract

This paper has designed a CAN controller soft core using the VHDL language and with the

reference of CAN2.0 bus protocol. This core architecture adopts hierarchical design thought

and consists of three parts, which are registers, bit timing logic and bit stream processor.

Referencing to the fault types about link layer and physical layer in the CAN protocol,

combining FPGA with SOPC design method, this paper design and implement CAN network

interference test system. A new CAN bus system to test the CAN controller soft core is built

based on the SOPC technology on different series of FPGA. After many times of experiments,

the results show that this core can realize different baud rate communication and disturbance

with good performance, and be transplanted conveniently.

Keywords

CAN2.0 Bus Protocol, Soft Core, CAN Bus System, SOPC.

1. Introduction

SOPC is a kind of special embedded system chip with programmable logic technology to integrate
the electronic system including processor, memory, I/O port, DSP, bus and so on. Assembling the

various IP core into a large system-on-chip is the essence of designing a system with SOPC. With the
emergence of high-density FPGA and the development of SOPC technology, the programmable

system implementation based on FPGA has also been widely used.

CAN bus is widely used in industrial field for the reliability, high transmission rate, long transmission

distance and other advantages. The key of designing the CAN bus system is to design and use the

CAN controller. The normal and easy design is to use a MCU and CAN controller, or to select the
MCU embedded CAN controller with CAN interface [1,2]. In the concept of the modern electronic

system design, the system described above is low integration, low reliability, not versatility. The
problem above can be solved by designing the CAN controller into soft core on FPGA with the SOPC

technology. Simultaneously, other digital circuit can be integrated by using the FPGA's resources
remained to effectively reduce the number of peripheral chips.

Based on the advantages of soft core designed above, this article designs a CAN controller soft core,

referring to the standard CAN2.0 protocol. The soft core that specific circuit function programed with
hardware description language, with the advantages of being reused, clipped and transplanted, can

enhance the efficiency and flexibility of system design.

2. Design of CAN Controller Soft Core

CAN controller is the kernel of CAN system, that mainly completes the communication of CAN
network and network protocol. For the external microprocessor (CPU), the CAN controller is a I/O

devices mapped memory, including all hardware and features to control communication of CAN
network [5]. The documents for SJA1000 that independent CAN controller designed by Philips are

comprehensive, structure clear. So this paper takes SJA1000 as a blueprint to build the CAN
controller structure. The structure of SJA1000 is consisted of seven function modules that are

International Journal of Science Vol.4 No.1 2017 ISSN: 1813-4890

148

interface management, bit timing logic, bit stream processor, error management, send buffer, receive

buffer and acceptance filter. The structure of CAN controller is shown in Fig. 1.

Interface Management

Registers

Bit Stream
Processor

Acceptance
Filter

Buffers

Send
Buffers

Receive
Buffers

CAN Controller

Bit Timing
Logic

Error
Management

Fig. 1 CAN Controller Diagram

2.1 Register Block

CAN controller registers consist of two parts: the control register and data register. The control

register includes mode register, status register, command register, interrupt register and the others
registers. It’s total about seventeen kinds of registers. Each register has only one address uniformly

distributed in order. So, the microprocessor could use the interface of management to read and write
registers [3].

There are two mode selections: reset mode and work mode. All the registers could be changed by the

microprocessor to initializes the CAN controller in reset mode. After initialization, the
microprocessor could start or stop the transmission by sending the request command. When sending,

the microprocessor writes the pending data to the transmission buffer, and then sets the transmission
request bit in the command register to initiate the transmission. Upon receiving, the bit stream

processor saves data in the receive buffer and requests the microprocessor to read. The receive buffer
is a 64-byte FIFO that can continue to receive other messages while the CPU is processing a message.

During the processing, the microprocessor stores the controller status and interrupt information in the
status register and interrupt register respectively [3-6].

2.2 Bit Timing

The bit timing logic mainly task is to achieve the bus timing and synchronization. It would configures
the bus timing parameters to adjust the transmission rate of the bus by dividing the system clock to the

bus clock. At the same time, the CAN controller can monitor and sample the bus and transmit the
pending message on the bus accordance to the setting time stream.

In accordance with the CAN protocol: the bus has been in a recessive position when no messages

transmission on the bus. A bit of recessive to dominant, it will trigger a hard synchronization, that is a
sign of starting to transmit a message. The hard synchronization is cleared off after the CAN

controller sample. A resynchronization is triggered each time when a transition from recessive to
dominant bit is detected and the transition falls outside the synchronization segment during the

reception of the message. The bit timing could be incremented or shorten based on the edge of
transition to ensure the proper sampling. Only one synchronization can be performed in a bit time

[3-6].

International Journal of Science Vol.4 No.1 2017 ISSN: 1813-4890

149

2.3 Bit Stream Processor.

Being the CAN controller’s core, bit stream processor’s task is to frame, arbitration, response and bit

encoding/decoding for message. The bit stream processor performs functions such as bus arbitration,
bit stuffing, and CRC calculation in accordance with the CAN protocol, and performs functions such

as removing bit stuffing, CRC check, data acknowledgment, reception filtering, error detection, and
error calibration when receiving data [3-5].

Fig. 2 shows the packet transmission process. When sending a message, the microprocessor first

reads the status register to check whether the bus is idle. If it is busy, it enters the receiving mode to
receive message. If it is idle, it writes the message to the sending buffer and writes a request to the

command register. The bit stream processor reads the messages in the transmit buffer, assembling the
data and performing CRC calculation. Then it sends the serial data to the shift register for

serial-to-parallel conversion, encoding the serial data (bit stuffing) to the bus. Simultaneity, the bit
stream processor compares the transmitted data with the data sampled by the bit timing logic from the

bus to determine whether having bus access. If the arbitration is lost, the packet is received. If bus
access is granted, the sender continues to send data and compares the transmitted data with the

sampled data to determine if there are any bit errors. If any error detected, then it reports errors to the
error management logic and updates the arbitration lost capture registers and errors code capture

register. After the data is sent, the sender waits for the receiver's response. If the response is received
correctly, the transmission process ends and the bus enters the idle state. If the response is not

received in time, the sender will retransmit the data [6,7].The packet received process,see Fig 3.

START

Bus Idle?

Write message to transmit buffer
Write command to command register

BSP read transmit buffer
Encoding data

Bit timing logic transmit & detect

arbitrate? N

recieve

Y

Transmit & detect

Equal？

Y

Transmit all the data

Response?

Y

idle

end

Y

N

N

N
Update
register

START

Bit timing logic detect

Any CRC error?

N

Acceptance filter

Equal？

Save to receive buffer

idle

end

BSP decoding

Transmit ACK

Y

Y

EML

N

Abandon
message

Fig. 2 Transmit flow chart Fig. 3 Receive flow chart

2.4 Error Management state.

The CAN protocol defines five types of errors: bit errors, CRC errors, form errors, stuffing errors, and

acknowledgment errors. When the bit stream processor detects any error on the bus, it will report the
error to the error management logic. The error management logic adds, subtracts, or clears the receive

error counter and the transmit error counter according to the twelve errors monitoring rules described
in the protocol. The controller defines three faults: Error Activation, Error Acknowledge or Bus Off

according to the error limit register. Once the receive error counter or send error counter reaches the
limit, the error management logic will to make the appropriate fault handling based on the protocol

error handling policy.The state of error management see Fig. 4.

International Journal of Science Vol.4 No.1 2017 ISSN: 1813-4890

150

analysis error management

start

Passiv e Error

Actor Error Bus Off

TEC<128 & REC<128

TEC>127 | REC>127

User Request & 128 times

11 consecutive recessive

TEC>255

Fig. 4 error management state

2.5 Bit Sequence Trigger Detection and Distortion.

Message transmission have a different type of frames that are data frames, remote frame, error frame,

overload frame.For a designated bus system, first to calculate the system transmission baud rate, to
determine the message frame width of each bit.So, from the start bit of the frame, the controller

translate a bit every other a few wide, high level as the dominant logic 0, low level of implicit logic 1.
After the decoding of the data, the controller needs to parsing the meanings of the binary data

representation frame message.

According to the CAN communication protocol, it has the fixed frame format characteristics for a

certain type of frame. According to these characteristics, the controller could identify the category of

frames transmitted over the bus and frame structure of potential field. Then,the controller will make
the signal distortion corresponding to sequence preconfigured, forcing the bit stream transmiitting on

the bus to distort.The execution flow chart shown in Fig 5.

Start

Bus idle

initialization

Error counter
initialize & start

Cnt==fcnt/2？

Read a bus value

Cnt==fcnt？

Clean the counter
Cnt <= 0

Wait for meet

N

N

decode

analyze frame
type

Meet filter？

Error frame？

Over load frame？

Interval frame？

pend

Y

Y

Y

Y

disturbtion？

Stand data frame？

Initialize bit
counter cnt_r

Frame SOF

Read the value to
trigger cnt_tri

Bit disturb？

Read a bus value

cnt_r = +1

Cnt_r == cnt_tri ?

External data frame？

N

Y

N

N

N

N

Bit stuff disturb？

Fix format bit disturb？

CRC disturb？

ACK disturb？

N

N

N

N

N

Y

Y

Y

Y

Y

Read bit sequence
preconfigure

Y

Write to disturb

finish？

Y

1

1

1

N

Fig. 5 distortion execution flow chart

3. Functional verification of the controller

When two nodes are set to send packets of different priorities on the bus at the same time, the PC
receives the higher priority packets. This proves that CAN controller designed in this paper can deal

International Journal of Science Vol.4 No.1 2017 ISSN: 1813-4890

151

with bus collision according to non-destructive arbitration mechanism. In order to verify the error

management capability of CAN controller, this paper makes the short circuit and open circuit fault of
the bus system. The CAN controller designed in this paper can correct the errors according to

CAN2.0 protocol. Using USB-CAN tool to monitor the network transceiver, the test process as
follows:

1) Transmission test: Set the baud rate to 1Mbit/s, 500kbit/s and 250kbit/s respectively, and

continuously send the message for 5 hours according to the 5ms interval and count the received
packets on the PC.

2) Receiving test: When the baud rate is 1Mbit/s, 500kbit/s and 250kbit/s, the PC will continue to

send messages for 5 hours according to the interval of 10ms. The CAN controller will reply each
message.

3) Distortion test: This paper disturb the SOF, CRC and ACK field to validate the precept. And the

system continue to test for 5 hours according to the interval of 10ms. The result shows that the system
is stable and reliable.ACK disturb see Fig.6.

Fig. 6 ACK distortion chart

4. Platform Verification of the Controller

This article tests the soft core on the platform of Altera’s FPGA for the utilization of resources and

performance reports. The test results show that the soft-core resources designed in this paper occupy
little logical. The soft core performance in different series of FPGA, the table one gives the maximum

performance achieved. The user could adjust the frequency to determine the bus transfer rate
according to requirements. In addition, the controller soft core is simulated with Modelsim 6.0a. The

simulation results showed that it can conform to CAN2.0 protocol specification.The platform being
tested,see Table 1.

Table 1. Controller on Altera FPGA

FPGA Level Logic Unit Fmax(MHz)

Cyclone -6 1955 100

Cyclone Ⅱ -6 1925 100

Cyclone Ⅳ -6 1970 100

International Journal of Science Vol.4 No.1 2017 ISSN: 1813-4890

152

5. Conclusion

In this paper, it designs a CAN controller soft core referencing to the structure and function of

SJA1000. It is proved that the soft core implements CAN2.0 protocol standard, with less resource
occupation and high performance. The CAN controller soft core designed in this paper can be used as

a single chip external controller or integrated with the processor soft core to realize the design on
FPGA. This paper verify that the distraction system is stability and reliable by bit interference test.

When it is integrated into other systems, only the soft core interface should be modified. CAN bus
control system integrated into the FPGA as a module, can effectively improve the system integration,

to ensure system reliability.

References

[1] Anyu Cheng, Yan Meng, Xiaopin Wang, Jia Li. The design of the truck CAN network test
system based on HIL[J]. International Core Journal of Engineering, 2015, 1(5): 75-81.

[2] Jun Cai, Jia Li, Yan Meng, et al, Vehicle CAN gateway static route design[J]. International
Journal of Science, 2016, 3(2): 63-39.

[3] Hu Jian, Li Guangyan, Yu Xiangpeng, et al. Design and application of SAE J1939
communication database in city-bus information integrated control system development [C]//

Mechatronics and Automation. 2007 International Conference on. Harbin: IEEE, 2007: 3429
-3434.

[4] Meng Liu, Behnam M, Nolte T. A stochastic response time analysis for communications in
on-chip networks [C]//Embedded and Real-Time Computing Systems and Applications

(RTCSA), 2015 IEEE 21st International Conference on. Hong Kong: IEEE, 2015: 237-246.
[5] Tindell K, Burns A, Wellings A J. Calculating controller area network (CAN) message response

times[J]. Control Engineering Practice, 1995, 3(8): 1163-1169.
[6] Davis R I, Burns A, Bril R J, et al. Controller Area Network (CAN) schedulability analysis:

Refuted, revisited and revised[J]. Real-Time Systems, 2007, 35(3): 239-272.
[7] Navet N, Song Yeqiong, Simonot F. Worst-case deadline failure probability in real-time

applications distributed over controller area network[J]. Journal of Systems Architecture, 2000,
46(7): 607-617.

[8] Tindell K W, Hansson H, Wellings A J. Analysing real-time communications: controller area
network (CAN)[C]//Real-Time Systems Symposium (RTSS), 1994 IEEE. San Juan: IEEE, 1994:

259-263.
[9] Zeng Haibo, Natale M D, Giusto P, et al. Using statistical methods to compute the probability

distribution of message response time in controller area network[J]. IEEE Transactions on
Industrial Informatics, 2010, 6(4): 678-691.

[10] Broster I, Burns A, Rodriguez-Navas G. Timing analysis of real-time communication under
electromagnetic interference[J]. Real-Time Systems, 2005, 30(1-2): 55-81.

