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Abstract 

This paper presents the modeling and control of a personal assistant robot manipulating an 

object. This robot is used for domestic tasks and can be regarded as a dual-arm/hand mobile 

manipulator system. First, the kinematics of the mobile platform part, the manipulator part, 

the dexterous hand part and the object is established by modified D-H method separately. 

Secondly, the kinematics of the mobile manipulator with hands is developed. The dynamics of 

the robot and the object is derived by Lagrange’s theorem respectively. Then the constrained 

dynamics of the robot-object system is discussed. In order to make the object follow a desired 

trajectory, a control algorithm using computed torque method is proposed. This control 

method is based on the precise constrained dynamics. Finally, for simulation, the mobile 

manipulator system with the dexterous hands is developed using MATLAB. The simulation 

results have shown the efficiency of the proposed control method. 

Keywords  

Personal assistant robot; dexterous manipulation; dynamic modeling; computed torque 

control.  

1. Introduction 

In recent years, for creating a robot with dexterous manipulation, the study on control of powerful 

robots with dexterous arms has attracted significant attention. The project underway pursues the 
prototype development of a personal assistant robot for assistance tasks in household environments. It 

is a complex machine that consists of a mobile platform, two robotic arms and two dexterous hands. 

This type of robot is called a mobile manipulator [1-6]. So far there are many developed 

multi-fingered hands [7-13]. Although researches on mobile robots, robotic arms, manipulation by 

multi-fingered hands and even on mobile manipulators have been studied in various research 

institutes and universities, there are few works related to a redundant system considering mobile 

platform, arms and hands as a single system (as ARMAR-III [14] and Meka [15]). Most researches on 

robots have been developed in their own independent and separated lines without considering any 

coordination of each other. Object manipulation with a multi-fingered mobile manipulator is a 

challenging task, especially in service robot applications.  

For control creation in mobile manipulation tasks, first, the kinematic and dynamic models of the 
dual-arm/hand mobile manipulator system should be developed. The kinematics involves 

determining the possible movements of the robot, without considering the forces and torques acting 

on the robot. Getting the kinematic model is the prerequisite needed to establish a dynamic model. 

The Denavit-Hartenberg representation [16], also called the D-H convention, describes a systematic 

way to develop the forward kinematics for rigid robots. This convention to develop reference frames 
is commonly used in robotic applications. There are two slightly different approaches to the 

convention: the so called standard D-H notation described in for example [17] and the Modified D-H 

form (MDH) found in [18].  
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The response to the forces and torques is the subject of the dynamics. There are several fundamental 

methods for the formulation of equations of motion, such as Newton-Euler formulation [19], 

Euler-Lagrange principle [20], Kane’s method [21], and Screw theory [22]. All the above mentioned 

approaches have their own advantages and disadvantages when applied to complex robots like mobile 
manipulators. In this paper, MDH and the Euler-Lagrange methodology are chosen to lead our study.  

Another important aspect of object manipulation is the control scheme implemented. The two main 

types of control are force control and position control. The execution of object manipulation requires 

controlling the interaction forces to ensure grasp stability.  This is accomplished by satisfying form or 

force closure conditions. In this paper, Linear Matrix Inequalities (LMI) is used to optimize the 
grasping forces [23, 24]. On condition that the precise dynamic model of the robot–object system has 

been obtained, many classical dynamic model based trajectory tracking methods such as computed 

torque method and feedforward control law can be applied for the position control. In this paper a 

control scheme for the robot-object system intended for the study of dexterous manipulation is 

proposed by the computed torque method.  

The rest of this paper is organized as follows. In Section 2, the kinematic models of the mobile 
platform part, the manipulator part, the dexterous hand part and the object are established separately. 

Then the kinematics of the mobile manipulator with hands is developed. In Section 3, the dynamics of 

the robot and the object is derived by Lagrange’s theorem respectively.  In Section 4, the constrained 

dynamics of the robot-object system is discussed. Section 5 proposes a model based control method 

in order to track a desired trajectory imposed to the object. Numerical simulation results are shown in 

Section 6 to illustrate the effectiveness of the proposed control method. Finally, Section 7 concludes 

the paper. 

2. Kinematic Modeling 

In this section, the overall kinematic equations of the robot are discussed briefly. The service robot is 

built from a set of links, joined with revolute joints that can rotate the robot around a given axis. If the 

dexterous hands are not taken into account, the robot’s links and joints can be divided into five main 

parts: mobile platform, waist, left arm, right arm and head. As shown in Figure 1(a), three kinematic 

loops are formulated: 

 Loop a: it contains platform, waist, right shoulder and right arm. 

 Loop b: it contains platform, waist, left shoulder and left arm.  

 Loop c: it contains platform, waist, neck and head. 

Substituting a pair of dexterous hands for the end-effectors, the complete robot can be divided into 

nine kinematic loops Loop R1, Loop R2, Loop R3, Loop R4, Loop L1, Loop L2, Loop L3, Loop L4 

and Loop c as denoted in Figure 1(b). Figure 1 (b) shows that each independent loop contains a finger. 

(a)

Loop a Loop b

Loop c

Head

Shoulder Shoulder

Waist

Arm Arm

Platform  (b)

Loop R4

Loop R1

Loop R2

Loop R3

Loop L1

Loop L2

Loop L4
Loop L3

Loop c

 

Figure 1: Kinematic loops (a) The simplified kinematic loops of the robot without fingers (b) The 
simplified kinematic loops of the robot with fingers 

As can be seen, the personal assistant robot has a tree-like structure with multi-DOF (degree of 
freedom), and each finger can be treated as a branch on this tree. The complete kinematic model of the 

multi-fingered mobile manipulator can be obtained by modeling these separate loops. Due to the 
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independence the kinematic models of all the loops can be derived by the same approach. Note that, 

in the following sections, Loop c will be neglected and not be simulated because it just supports the 

vision system.  

In this paper, q denotes the vector of generalized coordinates of Loop a and Loop b and may be 

separated into four sets
T

T T T T p

v w r lq q q q q    . The subscripts , ,v w r and l represent the mobile 

platform, waist, right arm and left arm respectively. m

vq  describes the vector of generalized 

coordinates of the mobile platform, n

wq   is the vector of generalized coordinates of the waist, 

and , a

r lq q  are the vectors of generalized coordinates of the right and left arms respectively. The 

total number of the generalized coordinates p is 2m n a  . The vector of generalized coordinates 'q of 

Loop R1, R2, R3, R4, L1, L2, L3 and L4 may be divided into three sets '' T T T p

v b fq q q q    . The 

subscripts v, b, f denote the mobile platform, robot body (including waist and dual arms) and fingers 

respectively.  2
T

T T T n a

b w r lq q q q     describes the vector of generalized coordinates of the waist 

and two arms, ,
T

T T

f rf lfq q q     , b

rf lfq q  , are the vectors of generalized coordinates of the right and 

left hands and the total number of the generalized coordinates ' 2 2p m n a b    . 

In this section, first, the mobile platform, the manipulator parts and the dexterous hands are discussed 

separately. Then the kinematics of Loop R1, R2, R3, R4, L1, L2, L3 and L4 are derived using a 

similar method.  Finally, the kinematics of a rigid body is discussed. 

2.1  Mathematical Model of Differential Wheeled Platform 

The platform has two driving wheels (conventional wheels) and two passive supporting wheels (omni 

wheels). The two driving wheels are independently driven by the DC motors. The schematic of this 

differential wheeled robot is shown in Figure 2. 

Passive 

wheel

Driving 

wheel

x

y

xcyc

b

2r


c

B

cv

 

Figure 2: Schematic of differential wheeled robot 

b :  the distance between the driving wheels;

r :  the radius of each driving wheel.
  

The nonholonomic constraint states that the robot can only move in the direction normal to the axis of 
the driving wheels, i.e., the mobile base satisfies the conditions of pure rolling and non slipping [25]: 

 cos sin 0c cy x         (1) 

where  
T

c cx y  are the coordinates of the center of mass in the world coordinate system, and   is the 

heading angle of the platform measured from the x-axis of the world coordinate system.  

Let the Lagrange coordinates of the mobile platform be  
T

v c cq x y  which represent the position 

of the robot in the world coordinate system, the constraint can be written in the form: 

 ( ) 0v v vA q q        (2) 

which is according to (1), where  ( ) sin cos 0v vA q    . 
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2.2 Forward Kinematics of Manipulator 

As mentioned above, without the dexterous hands, the robot can be divided into three independent 

loops. For the body (excluding mobile platform), each loop is considered as a linkage, which is 

defined to be a set of attached rigid bodies. Let us take Loop a as an example. Each rigid body is 

referred to as a link, denoted byW . Let
1W , 

2W , . . ., and 
n aW 

denote a set of n+a links. The kinematic 

analysis mainly includes two sides, one is the forward kinematic analysis, and the other is the inverse 
kinematic (IK) analysis. The forward kinematic analysis means that the location and pose of the 

linkage end point in a given reference coordinate system can be worked out with the given geometry 

parameters of the links and the variables of the joints. Let  1 2 ...
T TT T

w r n aQ q q q q q 
    denote the 

set of angles of rotational joints, then Q  yields an acceptable position and orientation of the links in 

the chain by using the homogeneous transformation matrix. Given the matrix 1i

iT expressing the 

difference between the coordinate frame of 
1iW 
and the coordinate frame of

iW , the application of 1i

iT  

transforms any point in 
1iW 
 to the body frame of

iW . Repeating the above procedure, the end-effector 

location  ' ' '
T

x y z  in the frame
0 attached to the mobile base is determined by multiplying the 

transformation matrices and the end-effector location  
T

n ax y z W  : 

      0 1 1

1 2' ' ' 1 ... 1 1
T T Tn a

n ax y z T T T x y z T x y z 

   (3) 

where 

0 0

4 4

0...0 1

0 0 0 1

x x x x

y y y yn a n a

z z z z

n o a p

n o a pR P
T

n o a p

 

 
 

 
    
  
 
 

, 0 3 3

x x x

n a y y y

z z z

n o a

R n o a

n o a





 
 

 
 
  

 and 0 3
T

n a x y zP p p p
    give 

the rotation axis and the position in the frame 0 , respectively. 

The above formula represents the forward kinematics for positioning a linkage by a specific joint 
configuration. The MDH method is used to analyze the kinematics. Figure 3 shows the Modified 

form of Denavit-Hartenberg. Frame i has its origin along the axis of joint i. 

Joint i-1

Joint i
Joint i+1

Link i-1 Link i

Xi-1

Yi-1

Zi-1
Yi

Xi

Zi

ai

ai-1

 

Figure 3: Modified form of Denavit-Hartenberg 

According to Modified form of Denavit-Hartenberg, the transformation matrix could be expressed by 

the following equation: 

 

1

1 1

1

1 1 1 11

1 1 1 1

( , ) ( , ) ( , ) ( , )

cos sin 0

sin cos cos cos sin sin

sin sin cos sin cos cos

0 0 0 1

i

i i i i i

i i i

i i i i i i ii

i

i i i i i i i

T Rot x Trans x a Rot z q Trans z d

q q a

q q d
T

q q d



   

   



 



   

   

   

 
 

 
 
 
 
 

 (4) 

where   
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1 1 1

1 1 1

1

1

the angle between  and  measured about ,

the distance from  to  measured along ,

the angle between  and  measured about ,

the distance from  to  measured

i i i i

i i i i

i i i i

i i i

Z Z X

a Z Z X

q X X Z

d X X

   

  











  along .iZ

 

Figure 4 illustrates the idea of attaching frames of the mobile manipulator according to MDH. The 

frame
0 0 0x y z  is attached to the mobile base. And the other frames are attached to each of the links. 
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Figure 4: Coordinate frames attached to mobile manipulator 

MDH parameters of all joints are depicted in Table 1. 

Table 1: MDH parameters of mobile base and manipulators 

#   a q  d 

0-1 0° 0 0° 1 2L L  

1-2 -90° 0 -90° 0 

2-3 0° 3L  0° 3 4( ' )L L   

2-3’ 0° 3L  0° 3 4( ' )L L  

3-4/3’-4’ -90° 0 90° 0 

4-5/4’-5’ -90° 0 -90° 5 6L L  

5-6/5’-6’ -90° 0 -90° 0 

6-7/6’-7’ -90° 7L  180° 0 

7-8/7’-8’ -90° 8L  90° 0 

8-9/8’-9’ -90° 0 -90° 0 
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Tasks to be performed by a manipulator are in task space, whereas actuators work in joint space. Task 

space includes orientation matrix and position vector. However, joint space is represented by joint 

angles. The conversion from the position and orientation of the end-effector in task space to the joint 

angles in joint space is called as IK problem. The inverse formula of (3) forms IK problem in which a 
set of joint angles need to be calculated corresponding to a given spatial constraint of the end-effector. 

In this paper the numbers of joint DOFs of all loops are more than the number of spatial constraints, 

the system is redundant and there are multiple solutions. 

2.3 Kinematics Analysis of Dexterous Hand 

This part sets out the framework for the mathematical modeling of kinematic equations for the 

multi-fingered hand. Forward kinematics is used to obtain the fingertip position and orientation 

according to the finger joint angles. 

 

Figure 5: Structure of dexterous hand 

According to the mechanical structure, each dexterous hand is composed of five fingers and all of the 
fingers have the same size and shape. Among these five fingers, the last two fingers (the ring and the 

little fingers) are mechanically coupled so that they keep the same motion. Therefore these two 

fingers just have 4 DOFs and the little finger only plays a supportive role. Thus, this hand totally has 

16 DOFs. The kinematic structure of the finger mechanism is based on a simplification of a human 

finger. In this paper the last two fingers are considered as one finger. 
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Figure 6: Finger linage (a) Definition of reference frames (b) Geometry of a finger module 

As indicated in Figure 6, the mechanism consists of four joints. The angular positions of the first and 

second joints of finger i of the right (left) hand are defined by
1( ) ir l fq and

2( ) ir l fq . The angular positions of 

the third and fourth joints are defined by 
4( ) ir l fq  and

4( ) ir l fq , respectively. Neglecting the superscripts r 

and l, 
1 2 3 4i i i i i

T

f f f f fq q q q q    represents the generalized coordinates of each finger. Table 2 shows 

the dimensions of the fingers. 

Table 2: Kinematic parameters of fingers 

Link lengths (mm) Location of center of mass (mm) 

1f
h

 21.00 1 5 

2f
h

 28.53 2 20 
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3f
h

 27.16 3 20 

4f
h

 18.50 4 7.5 

Considering the fingertip as the end point, the forward kinematics of the finger is also derived by 
MDH method. The parameters of all joints are depicted in Table 3. 

Table 3: MDH parameters of fingers   

#   a q  d 

0-1 90° 0 90° 0 

1-2 90° 1f
h

 0° 0 

2-3 0° 2f
h

 0° 0 

3-4 0° 3f
h

 0° 0 

2.4  Robot Kinematics with Dexterous Hands 

Consider a bimanual manipulation system composed by a mobile platform, a two s waist and a 

dual-arm/hand system. The direct kinematics can be computed by introducing a frame 
B fixed with 

the ground, a frame,
0 , attached at the center of the mobile base, two frames, 

r and
l , attached at 

the bases of the right and left arms, respectively, and two frames, 
rp and

lp , attached to the palms of 

the right and left hands, respectively. Moreover, assuming that each arm ends with a robotic hand 

composed by N fingers, it is useful to introduce a frame 
irf  (

ilf ), attached to the distal phalanx of 

finger i ( i = 1 N ) of the right (left) hand. 

Consider Loop iR . The pose of 
irf with respect to the base frame B can be represented by the well 

known (4 × 4) homogeneous transformation matrix 
i

B

rfT  (
i

B

rfR ,
i

B

rfP ), where 
i

B

rfR is the (3×3) rotation 

matrix expressing the orientation of 
irf with respect to the frame 

B and 
i

B

rfP is the (3 × 1) position 

vector of the origin of 
irf with respect to B . 

Hence, the direct kinematics can be expressed as: 

 
0

0i i

B B r rp

rf r rp rfT T T T T       (5) 

where 0

BT is the matrix relating the mobile base frame to the base frame, 0

rT  is the matrix at the basis 

of the right arm to the mobile base frame and depends on the waist joint vector, r

rpT  is the matrix 

relating the right palm frame to the base frame of the right arm and depends on the joint vector of the 

right arm, and 
i

rp

rfT is the matrix relating the frame attached to the distal phalanx of finger i to the palm 

frame of the right hand and depends on the finger joint vector 
irfq , where the fingers are assumed to be 

identical. An equation similar to (5) holds for the left hand fingers (Loop iL ), with subscript l in place 

of subscript r. 

Due to the branched structure of the mobile manipulator, the motions of both the right and left arms 
are independent.  Therefore, the kinematics of the right and left hands can be considered separately. 

Hence, in the sequel, the superscripts r and l will be omitted and will be used explicitly only when it is 

required to distinguish between the right and the left arm. 

The differential kinematic equation relating the joint velocities to the velocity of finger frame 
if

 can 

be written as: 

 '
i if f iV J q  (6) 
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where '
i

T
T T T

i v b fq q q q     and 
if

J is the Jacobian matrix of the mobile part, the waist, the arm, ending 

with the 
thi finger. 

Therefore, the differential kinematic equation of the complete mobile base-waist-arm-hand system 
can be written in the form: 

 'f fV J q  (7) 

where 
1 N

T
T T

f f fV V V    ,
1

'
N

T
T T T T

v b f fq q q q q    and 
fJ is the Jacobian matrix of the overall 

mobile base-waist-arm-hand system. 

2.5 Kinematic Description of Object  

A rigid body that is free to move in space has six DOFs. This can be described by an open kinematic 

chain with six joints (three prismatic joints and three revolute joints). To describe the posture of the 

body we consider ZYZ Euler rotation. Similar to the previous case it is easy to obtain the direct 
kinematics. The homogeneous matrix which describes the posture of the object (O) in space relative 

to the fixed reference frame B depends on the values of the local 

parameterization  
T

oX x y z     .   3TB

oP x y z  is the object position relative 

to B and  
T

   represents the ZYZ angles. The rotation axis of the object in the frame B  is 

denoted by 
B

oR which is expressed as following: 

 

( , ) ( , ) ( , )

cos sin 0 cos 0 sin cos sin 0

     sin cos 0 0 1 0 sin cos 0

0 0 1 sin 0 cos 0 0 1

B

oR Rot z Rot y Rot z  

     

   

 



      
     


     
          

          (8) 

3. Dynamic Modeling  

3.1 Dynamic Modeling of Mobile Manipulator 

The dynamics of mobile manipulators subject to kinematic constraints can be obtained using the 

Lagrangian approach in the form [26]: 

 ( ) ( , ) ( ) ( ) ( )T

dM q q C q q q F q A q E q                      (9) 

where r kinematic constraints are described by: 

   0,A q q                                     (10) 

and pq denotes the p generalized coordinates, ( ) p pM q  is a symmetric and positive definite 

inertia matrix, ( , ) p pC q q  presents a centripetal and Coriolis matrix, ( , ) pF q q  is a friction and 

gravity vector, ( ) r pA q  represents a constraint matrix, r is the Lagrange multiplier vector 

which denotes the constraint forces, p

d   denotes unknown bounded disturbances including 

unstructured dynamics, ( )( ) p p rE q    is the input transformation matrix, and p r  is a torque input 

vector. 

According to the standard matrix theory, there exists a full rank matrix ( )( ) p p rS q   formed 

by p r columns that span the null space of ( )A q defined in (10). i.e.. 

 ( ) ( ) 0T TS q A q                                (11) 

As mentioned above, the generalized coordinate q of Loop a and Loop b is separated into four 

sets
T

T T T T

v w r lq q q q q    . We can find an auxiliary vector ( )
T

T T T T p r

w r lv q q q      such that for 

all t,  

 ( )  or ( )v vq S q q S q v                         (12) 
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v  can be defined as
T

r l  
  or  

T

c cv  , where 
r  and 

l are the angular velocities of the right and 

left wheels, respectively; 
cv  and 

c  are the linear and angular velocities of the mobile base, 

respectively. 

The time derivate of (12) is: 

 ( ) ( ) ( ) ( )q S q t S q t                       (13) 

Multiplying both sides of (9) by TS and rewriting it as: 

 dM C F E                                (14) 

where , , , ,T T T T T

d dM S MS C S CS S MS F S F S       and TE S E . 

Property 1: The inertia matrix  M q is symmetric and positive definite. 

Property 2: Matrix    2 ,M q C q q  is skew-symmetric. 

Property 3: The time-varying unstructured disturbance term
d is bounded by sup || ||d N

t

  . 

Using the separated generalized coordinates
T

T T T T

v w r lq q q q q    , (9) can be expressed as: 
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0
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q qM M M M C C C C

M M M C C Cq q

M M M C C Cq q

F A q

F

F

F



      
      
      
      
      
         

 
 
  
 
 

  

dv v v

dw w

dr r

ldl

E 

 

 



    
    
     
    
    

    

 (15) 

Equations (9) and (15) represent the dynamic equations of the mobile manipulator subject to 
kinematic constraints without the dexterous hands. 

3.2 Dynamic Modeling of Mobile Manipulator with Hands 

The dexterous hands can be mounted on the ends of the robotic arms directly. Based on the discussion 

given above, the complete dynamic model with a pair of dexterous hands can be expressed as: 

 
( )

0

0

v vb vf v v vb vf v v

bv b bf b bv b bf b b

fv fb f f fv fb f f f

T

v v dv v v
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M M M q C C C q F

M M M q C C C q F

M M M q C C C q F

A q E  

 

 

         
         

          
         
         

     
     

       
     

    

 (16) 

Considering the nonholonomic constraints and their time-derivatives, the dynamics can be expressed 
as: 

T T T T T T T

v v v v vb v vf v v v v v v v vb v vf

bv v b bf b bv v bv v b bf b

fv v fb f f fv v fv v fb f f

T T

v v v dv

b db

f df

S M S S M S M v S M S S C S S C S C v

M S M M q M S C S C C q

M S M M q M S C S C C q

S F S

F

F


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

      
      

       
            
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   
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S E 




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  
  

 

              

(17) 
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where the subscripts v, b, f denote the mobile platform, the body including the waist and the arms, and 

the fingers respectively. 

Similarly, the complete dynamic equation can also be described in a compact form: 

 ' ' ' ' ' 'dM C F E        (18) 

where 

' , ' ,

' , ' , ' '

T T T T T T T

v v v v vb v vf v v v v v v v vb v vf

bv v b bf bv v bv v b bf

fv v fb f fv v fv v fb f

T T T

v v v dv v v v

b d db b

f df f

S M S S M S M S M S S C S S C S C

M M S M M C M S C S C C

M S M M M S C S C C

S F S S E

F F E
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 

   

 

   
  

    
      

    
    

      
    
    

, .b

f

v

q

q



  
  

  
  

 
 

3.3 Object Dynamics 

As mentioned above, a rigid body with six DOFs can be described by a kinematic chain with six open 

link, three revolute and three prismatic joints. Thus, the dynamic equations can be obtained in a 

similar manner: 

 ( ) ( , ) ( , )o o o o o o o o o o oM X X C X X X N X X F                    (19) 

where  
T

oX x y z    represents the posture of the object relative to the fixed reference, 

while
oF is the wrench applied to the center of mass of the object; the dynamic matrices 

6 6 6 6,o oM C   and 6 1

oN  are the acceleration-related inertia matrix, Coriolis and centrifugal 

matrix and vector of friction and gravity respectively. 

4. Robot-Object System 

x

x

y
y

zz

O

Ci

x
y

z

B

iOCg

BOg

 

Figure 7: Coordinate frames and representation of a finger touching a sphere 

Consider an object manipulated by a robotic hand as a closed kinematic chain. We assume that the 
contact locations are fixed on the object. First, we introduce the reference frames at the contact point. 

Figure 7 shows a situation where there is a contact from a finger with the coordinate frame 
iC . Frame 

B  is fixed with the ground. O denotes the object coordinate frame. The choice of reference point is 

always the center of mass of the object. 

For clarity from now on we will consider two reference frames at the contact point: one is on the 

object (
Oi

C ) and the other one is on the fingertip (
fi

C ). The position and orientation of the contact 

point on the object with respect to the reference system centered on the object ( O ) are described by 

the homogeneous matrix
iOCg , which depends on the local coordinates of this point. The posture of the 

object relative to the reference frame B  is expressed by the homogeneous matrix BOg . Note that in 
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this section homogeneous transformation matrix is denoted by g in order to distinguish between 

homogeneous matrix and torsion
fT  which will be discussed later. 

4.1 Constraint on Contact Force 

(a) Wrenches between the fingers and the grasped object 

A contact is basically a mapping between the wrench exerted by a finger at the contact point and the 

resultant wrench at a reference point on an object. There are many different contact types used to 
describe the wrench a finger is exerting on an object. They are frictionless point contact, point contact 

with friction, and soft-finger contact. In this section, we study hard-finger contact model which 

belongs to the second type. The hard-finger contact allows the forces to be applied within the friction 

cone. For the 
thi finger, this is represented by: 

 ,ci ci ci ci ciF B f f FC   (20) 

where the forces applied by a contact are modeled as a wrench 
ciF applied at the origin of the contact 

frame (
Oi

C or
fi

C ) ;
cif  is a vector represents the magnitude of the contact forces applied by the finger; 

ciB is wrench basis matrix and for the hard-finger contact it is defined as: 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

T

ciB

 
 


 
  

. 

Object

 surface

Finger 

contact

3f
3f

 

Figure 8: Hard-finger contact model 

The set ciFC represents the friction cone of contact i, and the hard-finger model applies: 

 
3 2 2

1 2 3 3

1
{ : , 0}

i ic c i i i i

i

FC f f f f f


      (21) 

where
  1 2 3

T

ci i i if f f f , 1if and 2if denote the tangent components of the friction force, 3if  denotes 

the normal component of the contact force, and i denotes the friction coefficient. 

(b) Grasp map 

Grasp map is used to determine the effect of contact wrenches on the object. To determine the effect, 

the wrenches must be transformed to the object coordinate frame. If ( , )
fi fioc ocR p is the configuration of 

the thi  contact frame relative to the object frame, then the wrench exerted by this contact can be 

written in the object coordinate frame as: 

 fi fi

T T

o goc ci goc ci ciF Ad F Ad B f    (22) 

where 
fi

T

gocAd  is the wrench transformation matrix that maps contact wrench to object wrench.  

We define the grasp matrix iG as a linear map between the contact forces and the wrench act on the 

object of finger i: 

 fi

T

i goc ciG Ad B  (23) 

If we consider N fingers in contact, the total wrench is the combination of all wrenches on the object 

due to the fingers. The grasp matrix G that maps all contact forces on the object is:  
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  
11 1... ...

f fN

T T

N goc c goc cNG G G Ad B Ad B   
   (24) 

In this way the total wrench on the object is given by: 

 o cF Gf  (25) 

where 
1 2

T
T T T

c c c cNf f f f    . 

(c) Force-closure 

If a grasp can resist any applied wrench, the grasp is said to be force-closure. When grasping an object 

and lifting it from the table, it is necessary to apply appropriate wrenches at appropriate locations on 
the object so as not to allow gravity or possibly other external forces to pull the object out of the grasp. 

If a grasp can resist any external wrench eF  applied to the object, there exist contact forces c cf FC , 

such that: 

 c eGf F   (26) 

(d) Internal force 

A key feature of a force-closure grasp is the existence of internal forces. Internal force is a set of 
contact forces which result in no net force on the object. 

 ( ), 0N NF N G GF   (27) 

Internal forces can be used to insure that the contact forces satisfy the friction cone constraints. 

4.2 Grasp Constraints  

In this case, the constraints between the object and the fingers can be formulated by requiring that 

certain velocities are equal. For example, at a given contact point, the velocity of the contact point on 

the fingertip and that on the object must agree in the direction normal to the surface. 

(a) Grasp constraints of multi-fingered hand 

Recall that for the hand each finger is as an open kinematic chain, the spatial velocity of the fingertip 
can be written as: 

 ( )i i

i i i i i i

f f

s f s f f fV J q q  (28) 

where ( )i

i i i

f

s f fJ q is the distal Jacobian matrix that transforms the angular velocities (
if

q ) of finger joints 

to the velocity of end of a finger( i

i i

f

s fV ) in the frame attached to the finger’s end ; 
is

  is the base frame 

of the thi finger attached to the palm and at the point where this finger is connected. 

Assume that each finger has a fingertip with known shape. The transformation
i fi

f cg  from the end of 

the finger to the contact point at the thi fingertip depends on the local coordinates of the contact point 

on the surface of the fingertip. 

In general, the directions in which the motions are constrained are precisely those in which the forces 

can be exerted. Hence, for a contact with the wrench basis
icB  which has been illustrated in equation 

(20), we require that: 

 0fi

i o fi i

cT

c c cB V   (29) 

The explicit form of the relative velocity between the fingertip and the object at the contact point is: 

 
fi i

o f c f i i i c oi i f i fi i

c f o

c c g s f f g poV Ad J q Ad V   (30) 

where o

poV is the velocity of the object relative to the palm in the object frame, and 
fi

c og represents the 

homogeneous transformation matrix from the object frame O to the contact frame
fi

C on the 

fingertip, which is as: 

 f f oi oii i
c o c c c og g g  (31) 
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where
f oii

c cg  represents the homogeneous transformation from the frame 
Oi

C to the frame
fi

C and 

oic og represents the homogeneous transformation matrix from the object frame 
O to the contact 

frame
Oi

C on the object. 

Then 

 
i

i c f i i i i c of i fi i

fT T o

c g s f f c g poB Ad J q B Ad V  (32) 

Using (23) and (24), for the hand with N fingers, the contact kinematics has the form:  

 ( ) T o

h f f poJ q q G V  (33) 

where ( )h fJ q is the hand Jacobian matrix defined as: 

 

1

1 1 111

0

( )

0

c ff

N

N c f N Nf NN

fT

c g s f

h f

fT

c g s f

B Ad J

J q

B Ad J

 
 
 
 
  

  

This equation describes the grasp kinematics in terms of a set of ordinary differential equations. 

(b) Grasp constraints of multi-fingered mobile manipulator 

In this paper, the dexterous hands are mounted on the arms and then the velocities of the fingertips are 
related to those of the ends of the arms. Thus, a small change in the contact kinematics should be 

required. The contact kinematics is in the form: 

 ( ') ' T o

B B BoJ q q G V  (34) 

where ( ')BJ q is the Jacobian matrix of the whole system defined as: 

 

1

1 111

0

( ')

0

c ff

N

N c f Nf NN

fT

c g Bf

B

fT

c g Bf

B Ad J

J q

B Ad J

 
 
 
 
  

 

1
'

N

T
T T T T

v b f fq q q q q    has been defined in section 0; 'Bq  is the extension of vector 'q  and 

1
'

N

T T T T T T

B v b f v b fq q q q q q q    ; o

BoV is the velocity of the object relative to the base frame in the 

object frame. 

4.3 Contact Kinematics  

In most of human and robotic hand tasks, rolling contact plays an important role in the mechanics of 

the manipulation. In this section we focus on the research of the manipulation which involves the 

rolling contacts by a set of fingers. An accurate modeling of the rolling phenomenon is fundamental 

for the research. We begin with a kinematic study of the case of one smooth finger rolling on a smooth 

object and extend the grasping formulation to the moving contacts. If the fingertip and the object 
shapes are completely known, the contact kinematics can be described by a suitable parameterization 

of the contact surfaces. 

(a) Surface parameterizations [27] 

Given an object in 3 , we describe the surface of the object using a local coordinate chart, 

C: 2 3U   , as shown in Figure 9. 
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u

v C

B

2

 

Figure 9: Surface chart for a two-dimensional object in 
3  

Surface chart for a 2D object in 3 : 

 ( , ) [ ( , ), ( , ), ( , )]c u v x u v y u v z u v  (35) 

The map C takes a point 2( ,  )u v  to a point 3p on the surface of the object, written in the object 

frame. 

At any point on the object, we can define a tangent plane which consists of the space of all vectors 
which are tangent to the surface of the object at that point. The tangent plane is spanned by the 

vectors: 

 ,u v

c c
c c

u v

 
 
 

 (36) 

That is, any vector which is tangent to the surface at a point ( ,  )c u v may be expressed as a linear 

combination of the vectors 
uc and

vc , evaluated at ( ,  )u v . 

Given a parameterization, ( , , )p p pM K T are collectively referred to as the geometric parameters of the 

surface. These parameters describe the local geometry of the surface (metric tensor, curvature tensor, 
torsion) and play an important role in the kinematics of contact. 
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2 2

|| |||| |||| |||| || 0
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0 || ||

|| |||| || || ||

|| || || || || |||| ||

T T
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v uu v uv

p
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c n c n

c ccc
M K

c c n c n

c c c

c c c c
T

c c c c

 
 

        
 
  

 
  
 

 (37) 

where
2 2

2
, , , , while ,u v u v uu uv

n n c c c c
n n c c c c

u v u v u vu

     
     
     

,    ,  n N u v is the unit normal at a point 

on the surface. 

(b) Gauss Frame 

The curvature, torsion, and metric tensors can also be computed in terms of a special coordinate frame 

called the normalized Gauss frame. If ( , )c u v is an orthogonal chart, we define the normalized Gauss 

frame as: 

 , ,
|| || || || || ||

u v u v

u v u v

c c c c
x y z

c c c c


  


 (38) 

The normalized Gauss frame provides an orthonormal frame at each point on the surface. 
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Figure 10: Motion of two objects in contact 

Consider two objects with the surfaces 
oS and 

fS which are touching at a point, as shown in Figure 10. 

Let ( )o op t S and ( )f fp t S be the positions at time t of the contact point relative to two body-fixed 

frames 
O  and

F , respectively. Let  ( , )o oc U  and  ( , )f fc U  be the charts for the two surfaces, and 
1( )o o o oc p U   and 1( )f f f fc p U    be the local coordinates. Let  be the angle of contact, defined as 

the angle between the tangent vectors o

o

c

u




and f

f

c

u




.We choose the sign of  so that a rotation of 

o

o

c

u




through an angle   around the outward normal of 

oS aligns o

o

c

u




 with f

f

c

u




.Collecting the 

quantities which describe the contact, we obtain the contact coordinates 
T

f o     for 
fS and

oS .  

The contact kinematics allows the grasp matrix G and the hand Jacobian matrix hJ  to be computed 

using the contact coordinates: 

 
T T

f o f f o ou v u v             (39) 

In this work, it is assumed that the fingertips are semi-spheres and the object is a torus. Thus, the 

body-fixed frames F  and O mentioned above are attached at the origin of the semi-sphere and the 

origin of the torus respectively. The geometric parameters of the sphere and the torus can be found in 

[28]. 

(c) Kinematic equations for rolling contact 

We assume the pure rolling between the fingertips and the manipulated object. The motion of the 

contact coordinates,
T

f o       , as a function of the relative motion is given by: 

 

1 1

1 1

( )

( )

y

f f f o

x

y

o o f o

x

f f f o o o

M K K

M R K K

T M T M













  

 

 

 
   

 

 
   

 

 

  (40) 

where f

o f

Tc

c c x y z x y zV v v v        has been defined in (30), 
cos sin

sin cos
R

 

 

 
  

  
 

and o oK R K R  . 

Note that given the initial condition we can integrate the vector  for each contact point and obtain the 
contact coordinates   for each instant of time. 

4.4 Constrained Dynamics of Dual-Hand Mobile Manipulator and Object System 

The overall dynamics of a dual-hand mobile manipulator system manipulating an object is discussed 

in this section. In the previous section, we have analyzed the dynamics of the robot and the object 

which are all assumed free, i.e. neglecting the closure constraints. However, the physics of the robot 
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and the object as a whole system must be considered in a grasping task. To take into account the 

mutual relations and the wrenches exchanged between the fingers and the manipulated object we 

must slightly modify the dynamic equations. 

First, recall the kinematic constraint equation in terms of 'q which is the vector of the time derivative 

of the generalized coordinates 'q : 

  ' T o

B B BoJ q G V  (41)  

According to the nonholonomic constraints, for
T

b fv q q     , there exists a full rank matrix 

' ( ' )'( ) p p rS q    that satisfies: 

 ' 'q S    (42) 

We have known that 'Bq  is the extension of  'q , thus there exists a matrix 'BS  that satisfies: 

 ' 'B Bq S    (43) 

The kinematic constraints become: 

 
'

'

T o

B B Bo

T o

B Bo

J S G V

J G V








 (44) 

where ' 'B B BJ J S .  

From (44), the following kinematics can be derived: 

 
1' T

B oJ G P X   (45) 

We obtain the time derivative of (45): 

 1 1 1' ' T T T

B B o o oJ J G P X G P X G P X         (46) 

The matrix 'BJ is not invertible due to the redundancy of the entire system. Equations (45) and (46) 

become: 

 

'? 1

'? 1 1 1 '? 1( '( ))

     '

T

B o

T T T T

B o o o B B o

J G P X N

J G P X G P X G P X J J G P X N

N

 

 





   

 

    



 (47) 

where the symbol † denotes a weighted right pseudoinverse, '? 'B BN I J J  is a projector in the null 

space of the Jacobian matrix 'BJ ,  is a considered task function and ' is another considered task 

function. 

Assuming no friction, we should add a term 'T

B cJ f to the complete dynamics of the mobile manipulator 

to take account of the forces exerted by the object on the fingertips: 

 '' ' ' ' ' T

B cM C F E J f       (48) 

 
†

c o Nf G F F   (49) 

According to (48) and (49), the wrench applied to the object is equivalent to: 

 '? ( ' ' ' ' ') ' ''T

o BF GJ E M C F GN         (50) 

where ' ? '' T T

B BN I J J  is a projector in the null space of the Jacobian matrix 'T

BJ ,and '' means the third 

considered task function. 

If we replace  and   with (47), we obtain the wrench applied to the object as a format only with oX , 

oX and oX : 

 

'? '? 1 1

1 '? 1

'? 1

( ' ' '( (

      '( ))

      ') '( ) ') ' ''

T T T

o B B o o

T T

o B B o

T

B o

F GJ E M J G P X G P X

G P X J J G P X N

N C J G P X N F GN





  

 

 



  

  

    

 (51) 
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Then we obtain the complete description of the dynamics of the whole robotic system composed of a 

mobile manipulator with multiple fingers and an object to be manipulated: 

 '? ' 'T

o o BMX CX N GJ E     (52) 

where  
'? '? 1

'? '? 1 1 '? 1 '? '? 1

'? '? '? '? '?

' ,

' ( ' ) ' ,

' ' ' ' ' ' ' ''.

T T

o B B

T T T T T T

o B B B B B B

T T T T

o B B B B B B

M M GJ M J G P

C C GJ M J G P G P J J G P GJ C J G P

N N GJ F GJ M J J N GJ M N GJ C N GN   



   

 

    

     

 

5. Computed Torque Control for Object Manipulation with Mobile 
Manipulator 

In this section, an object manipulation method is proposed by the computed torque method based on 

the accurate model for the robot-object system.  

Substituting (47) and (49) into the dynamic equitation of the complete dynamic model which 

considers the external wrench: 

 

'? 1 1 1 '? 1

'? 1

' ?

'( ( '( ))

') '( ) '

' ' ( ( ) )

T T T T
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

 


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
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 (53) 

And rearranging it we have: 

 

'? 1 ' ?

' ? '? 1
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T T
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
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 (54) 

We adopt the following method to track the desired trajectory  dX t : 
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        ( ' )( )
o o

T T

B o o o N B o

T T T

B o o B B o

T T

B B o d v X p X

E J G C X N F F C J G P X N

M J G P X G P X J J G P X N N

M J G P J G M X K E K E

 

 



  



     
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 (55) 

where
oX d oE X X  and

oX d oE X X   , respectively, are the errors of the velocity and the trajectory of 

the object while Kv and Kp are diagonal matrices whose values are, respectively, the derivative and 

the proportional coefficients.  

In this paper, LMI is used to optimize the grasping forces and then the internal force NF  in the above 

equation can be obtained.  

Proof: We replace ' with (55) in (54) and obtain: 

 

'? 1 '? 1 ' ?

' ?

' ( ' )( )

                         

o o

T T T

B o B B o d v X p X

T

B o o

M J G P X M J G P J G M X K E K E

J G M X

    


 (56) 

Then the error dynamics is as following: 

 0
o o oX v X p XE K E K E    (57) 

The uniform ultimate boundedness of the tracking error can be proved from (57). 

6. Simulation Results 

This section gives some simulation results of object manipulation with the robot equipped with a pair 

of dexterous hands. For simulation, the robot with the dexterous hands is developed using MATLAB 

(Figure 11) which has the same structure as the real one. And all the links are simplified and are 

represented with columns. The initial configuration of the center of mass of the object 
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is [ ]T

oinit o o o o o o
X x y z     , where the first three components represent the position of the 

object relative to the base frame, and the last three ones describe the orientation of the object. 

Assume that a precision grasp is applied to the object. The task is designed as follows: starting from 

the initial configuration, the assistant robot grasps an object from the right hand side while making the 

left hand-arm system keep the initial configuration; given an initial configuration
oinitX , the object 

moves along a desired trajectory described by following function [ ]T

o o o o o o o
X x t y z     . 

(a)  

 (b)  

Figure 11: Object manipulation by mobile manipulator (a) Initial configuration of mobile 

manipulator and object system (b) Final configuration of mobile manipulator and object system 

Figure 11 and Figure 12 show the numerical simulation results of object manipulation by the 

complete mobile manipulator. Figure 11(a) and Figure 11(b) illustrate the initial and final 

configurations of the composite system during one run of the grasping algorithm. From Figure 11(b), 

it is observed that the robotic system can successfully manipulate the object without slippage, and at 
the same time the joints of left hand-arm system keep stationary. 

The object can well follow the desired trajectory as illustrated in Figure 12(a) which shows the 

motion in the x direction. Figure 12(b) shows the motions along the y and z directions. The Euler 

angles which represent the orientation are also shown in this figure. In Figure 12(c), threes curves 

depict the motion of the mobile platform which assists the hand to achieve the task. Figure 12(d), (e) 
and (f) show the joint torques of the fingers, the wheels, dual arms and the waist calculated by the 

algorithm, respectively. The simulation results validate the usefulness of the proposed control 

method. 

(a) (b)  
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(c)  (d)  

(e)  (f)  

Figure 12: Simulation results (a) The motion in x-direction (b) The motions in y, z- directions and the 

orientation change (c) Motions of mobile base (d) Joint torques of fingers (e) Joint torques of left arm 

(f) Joint torques of wheels, waist and right arm  

The optimal normal and tangential forces at all contact points are described in Figure 13. It can be 

seen that the contact forces all satisfy the friction cone constraints. 

(a)  (b)  

(c) (d)  

Figure 13: Magnitude of contact forces (a) Contact forces of finger 1 (b) Contact forces of finger 2 (a) 

Contact forces of finger 3 (b) Contact forces of finger 4 



International Journal of Science Vol.4 No.6 2017                                                             ISSN: 1813-4890 

 

66 

 

7.  Conclusion 

The paper sets up the complete kinematic and dynamic models for the personal assistant robot and the 

constrained models of the robot–object system are also given. The kinematics is established by using 

the MDH method and the dynamics is analyzed by Lagrange’s theorem. We have also presented an 

efficient control method for object manipulation. This control method is based on the precise 

constrained dynamic model which has been well developed. The object manipulation is realized in 

MATLAB environment. Simulation results show that the proposed method for object manipulation is 

effective. This method can ensure firm grip, avoid slippage and well track a given motion imposed to 

the object.  
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