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1. Introduction 

Ranked set sampling (RSS) was first proposed by McIntyre (1952, [1]) to estimated pasture yields. It 

is a two-stage sampling plan where a number of sampling units are first ranked without taking actual 
measurements at a small cost, and then, measurements are taken from a fraction of the ranked units. 

This can improve the precision of statistical inference when the actual measurements are difficult or 

expensive to obtain, but sampling units can be easily ranked by some means without actual 

quantification. For this advantage, RSS has been applied successfully in many areas such as 

environment, ecology, industrial statistics and sociology. The reader is referred to the monograph by 

Chen et al. [2]. 

Since Robbins, H [3-4] introduced empirical Bayes (EB) approach, it has been  developed in the 
literature[5-9]. However, most EB methods are based on simple random sampling (SRS). A heuristic 

idea is to develop EB methods based on RSS. Recently, in our another work (Li et al. [10]), empirical 

Bayes test rule and its asymptotical property for the parameter of power distribution based on RSS 

has been established. In this paper, we will construct empirical Bayes test rule for the parameter of 

Pareto distribution based on RSS. 

Let X have a conditional density function for given θ 

f(x|θ) =
𝜃𝛼𝜃

𝑥𝜃+1
 ,                                                                 (1.1) 

where α is known parameter, θ is unknown parameter, 𝛺 = {x|x > α} is the sample space and Θ =
{θ|θ > 0} is parameter space. We then discuss the  following two-sided test problem: 

𝐻0: 𝜃1 ≤ 𝜃 ≤ 𝜃2 ⇔ 𝐻1: 𝜃 < 𝜃1 𝑜𝑟 𝜃 > 𝜃2                                               (1.2) 

where 𝜃1 and 𝜃2 are given constants. Let 𝜃0 =
𝜃1+𝜃2

2
 and 𝛾0 =

𝜃1−𝜃2

2
, then the two-sided test problem 

(1.2) is equivalent with: 

       𝐻0
∗ : |𝜃 − 𝜃0|≤ 𝛾0 ⇔ 𝐻1

∗: |𝜃 − 𝜃0| > 𝛾0.                                              (1.3) 

For testing (1.3), we take loss function 

𝐿𝑖(𝜃, ⅆ𝑖) = (1 − 𝑖)𝑎[(𝜃 − 𝜃0)2 − 𝛾0
2]𝐼{[|𝜃−𝜃0|>𝛾0]} + 𝑖𝑎[𝛾0

2 − (𝜃 − 𝜃0)2]𝐼{[|𝜃−𝜃0|≤𝛾0]},  

i = 0,1, where a > 0, d = {d0, d1} is action space, d0 and d1 imply acceptance and rejection of  𝐻0
∗ 

respectively. 

Suppose that the prior distribution G(θ) of parameter the θ is unknown.  
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We can get random decision function 

  δ(x) = P(accept   𝐻0
∗|X = x).                                                              (1.4) 

Then, the risk function of δ(x) is given by 

R(δ(x), G(θ)) = ∫ ∫ [L0(θ, d0)f(x|θ)δ(x) + L1(θ, d1)f(x|θ)(1-δ(x))]
ΩΘ

dxdG(θ) =

a ∫ β(x)δ(x)dx
Ω

+ CG, (1.5)R(δ(x), G(θ)) = ∫ ∫ [𝐿0(θ, d0)f(x|θ)δ(x) + 𝐿1(θ, d1)f(x|θ)(1 −
𝛺Θ

δ(x))] dxdG(θ) 

= a ∫ β(x)δ(x)dx
Ω

+ CG,                                                                                      (1.5) 

where 

  CG = ∫ L1(θ,d1)dG(θ)
Θ

,    β(x) = ∫ [(θ − θ0)2 − γ0
2]f(x|θ)dG(θ) .                   (1.6)

Θ
  

The marginal density function of X is 

fG(x) = ∫ f(x|θ)dG(θ) =
Θ

∫ θ𝛼θ𝑥−(θ+1)dG(θ).
Θ

                                         (1.7) 

By (1.6), we have 

β(x) = A(x)fG
(2)(x) + B(x)fG

(1)(x) + CfG(x),                                           (1.8) 

where A(x) = x2 , B(x) = (2 𝜃0 + 3)x, C = (𝜃0 + 1)2 − γ0
2, and fG

𝑟(x) is the r-th order derivative of 

fG(x), for r = 0,1,2. Using (1.5), Bayes test function is obtained as follows 

δG(x) = {
1, 𝛽(𝑥) ≤ 0

0, 𝛽(𝑥) > 0
                                                             (1.9) 

Further, we can get the minimum Bayes risk 

R(G) = inf𝛿  R(δ, G) = R(δG, G) = ∫ β(x)δG(x)dx
Ω

+ CG.                      (1.10) 

From the issue above that δ(x) = δG(x) and R(G) can be achieved when the prior distribution of 

G(θ) is given. If not, we can use the EB method. The rest of this paper is organized as follows. Section 

2 presents an EB test based on RSS. In section 3, we obtain asymptotic optimality and the optimal 

rate of convergence of the EB test. 

2. Construction of EB test Based on Ranked Set Sampling 

A balanced RSS procedure can be described as follows: 

Randomly select k independent SRS samples from the population of interest. 

The k units in each sample are ranked visually or by any negligible cost method that does not need 
actual measurements. 

Only measure the smallest unit for each r size sample, r runs from 1 to k. 

Repeat (i)-(iii) m times, then we obtain k × m independent observations 

X(r)i, 𝑟 = 1, ⋯ , 𝑘, 𝑖 = 1, ⋯ , 𝑚, that collected a balanced RSS sample of total size n = k × m.  

We then construct the EB test function. Let 

X(1)1, X(1)2, ⋯ , X(1)m, X(2)1, X(2)2 ⋯ , X(2)m, ⋯ , X(k)1, X(k)2 ⋯ , X(k)m 

be a balanced ranked set sample from population which has the common marginal density 

functionfG(x). We assume perfect ranking. Denote that 

X(1)1, X(1)2, ⋯ , X(1)m, X(2)1, X(2)2 ⋯ , X(2)m, ⋯ , X(k)1, X(k)2 ⋯ , X(k)m 

are historical samples, and X is present sample. Assume fG(x) ∈ C𝑠,𝛼, x ∈  R1, where  
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 C𝑠,𝛼 = {g(x)|g(x) is a probability density function; 

 the s − he order derivative 𝑔(𝑠)(x) is continuous with |𝑔(𝑠)(x)| ≤ α, s ≥ 3, α > 0}. 

Let Kr(x) be a Borel measurable bounded function vanishing off (0,1) such that 

(C1): 
1

𝑡!
∫ 𝑦𝑡

1

0

Kr(y)ⅆ𝑦 = {
(−1)𝑡 , 𝑤ℎ𝑒𝑛 𝑡 = 𝑟

0, 𝑤ℎ𝑒𝑛 𝑡 ≠ 𝑟,
 𝑡 = 0,1,2, ⋯ , 𝑠 − 1. 

Kernel estimator of fG
(𝑟)(x) is defined by 

fn
(𝑟)(x) =

1

𝑚𝑘ℎ𝑛
(1+𝑟) ∑ ∑ Kr (

x − X(i)j

ℎ𝑛

)

𝑚

𝑗=1

𝑘

𝑖=1

                                           (2.1) 

 where ℎ𝑛 is a positive and smoothing bandwidth, and lim
𝑛→∞

ℎ𝑛 = 0. Denote fG
(0)(x) = 𝑓𝐺(𝑥), fG

(𝑟)(x) 

is the r-the order derivative of 𝑓𝐺(𝑥), for r = 0,1,2. Thus, the estimator of β(x) is   

𝛽𝑛(x) = A(x)fn
(2)(x) + B(x)fn

(1)(x) + Cfn(x).                                         (2.2) 

And, the EB test function is defined as 

δn(𝑥) = {
1, 𝛽𝑛(𝑥) ≤ 0

0, 𝛽𝑛(𝑥) > 0
.                                                               (2.3) 

Let E stand for mathematical expectation with respect to the joint distribution of 

X(1)1, X(1)2, ⋯ , X(1)m, X(2)1, X(2)2 ⋯ , X(2)m, ⋯ , X(k)1, X(k)2 ⋯ , X(k)m. Then, the overall Bayes risk of 

δn(𝑥) is  

R(δ𝑛(x), G) = a ∫ β(x)E[δ𝑛(x)]dx
Ω

+ CG.                                                     (2.4)         

If lim
𝑛→∞

 R(δ𝑛, G) = R(δ𝐺 , G), {δ𝑛(x)}  is called asymptotic optimality of EB test function. If 

R(δ𝑛, G) − R(δ𝐺 , G) = 𝑂(𝑛−𝑞), where 𝑞 > 0,  𝑂(𝑛−𝑞) is asymptotic optimality convergence rates of 

EB test function {δ𝑛(x)}. Before proving the theorems, we need the following lemmas. Let c, c1, c2, c3 

be different constants in different cases even in the same expression. 

Lemma 2.1. Let X(1)1, X(1)2, ⋯ , X(1)m, X(2)1, X(2)2 ⋯ , X(2)m, ⋯ , X(k)1, X(k)2 ⋯ , X(k)m be balanced 

ranked set samples. Suppose that (C1) hold, ∀x ∈ Ω, 

When fG
(𝑟)(x) is continuous function, lim

𝑛→∞
ℎ𝑛 = 0, and lim

𝑛→∞
𝑛ℎ𝑛

2𝑟+1 = ∞, we have  

lim
𝑛→∞

E |fn
(𝑟)(x)

− fG
(r)(x)

|
2

= 0. 

 When fG
(𝑟)(x) ∈ C𝑠,𝛼 , putting ℎ𝑛 = 𝑛−

1

2+𝑟, for 0 < λ ≤ 1, we have 

E |fn
(𝑟)(x)

− fG
(r)(x)

|
2λ

≤ 𝑐 ∙ 𝑛−
λ(s−2r+1)

2+𝑠 . 

Proof.  Proof of (I): Using 𝐶𝑟 inequation, we have 

E|fn
(𝑟)(x) − fG

(r)(x)|
2

≤ 2|𝐸fn
(𝑟)(x) − fG

(r)(x)|
2

+ 2𝑉𝑎𝑟 (fn
(𝑟)(x))  

 ≔ 2(𝐴1
2 + 𝐴2),                                                                          (2.5) 

where  

 

𝐸fn
(𝑟)(x) = ∑ ∑ 𝑛−1ℎ𝑛

−(𝑟+1)
𝐸[Kr (

x − X(i)j

ℎ𝑛

)]

𝑚

𝑗=1

𝑘

𝑖=1

= ℎ𝑛
−(𝑟+1)

𝐸 [Kr (
x − X

ℎ𝑛

)] 
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                           = ℎ𝑛
−(𝑟+1)

∫ Kr (
x − X

ℎ𝑛

) 𝑓𝐺(𝑦)ⅆ𝑦
∞

0

 

                           = ℎ𝑛
−𝑟 ∫ Kr(u)𝑓𝐺(𝑥 − ℎ𝑛𝑢)ⅆ𝑢.

1

0

 

The Taylor expansion shows 

𝑓𝐺(𝑥 − ℎ𝑛𝑢) − 𝑓𝐺(𝑢) =
fG

(1)(x)

1!
(−ℎ𝑛𝑢) +

fG
(2)(x)

2!
(−ℎ𝑛𝑢)2 + ⋯ +

fG
(𝑠)(x − ξℎ𝑛𝑢)

𝑠!
(−ℎ𝑛𝑢)𝑠, 

where 0 < ξ < 1. Because fG
(r)(x) is continuous in x, then 

0≤ lim
𝑛→∞

|𝐸fn
(𝑟)(x) − fG

(r)(x)| = lim
𝑛→∞

|
1

ℎ𝑛
𝑟 ∫ Kr(u)𝑓𝐺(𝑥 − ℎ𝑛𝑢)ⅆ𝑢 − fG

(r)(x)
1

0
| 

≤
1

𝑟!
∫ |Kr(u)| lim

𝑛→∞
|fG

(r)(𝑥 − ξℎ𝑛𝑢) − fG
(r)(x)|

1

0

ⅆ𝑢 = 0, 

and 

lim
𝑛→∞

𝐴1
2 = lim

𝑛→∞
|Efn

(𝑟)(x) − fG
(r)(x)|

2

= 0.                                         (2.6) 

It is easy to see that 

𝐴2 = 2𝑉𝑎𝑟 (fn
(𝑟)(x)) = 2 ∑ ∑ 𝑛−2ℎ𝑛

−2(𝑟+1)
𝑉𝑎𝑟[Kr (

x − X(i)j

ℎ𝑛
)]

𝑚

𝑗=1

𝑘

𝑖=1

 

≤ 2𝑛−2ℎ𝑛
−2(𝑟+1)

∑ ∑ 𝐸[Kr (
x − X(i)j

ℎ𝑛

)]2 ≤ 𝑐 ∙ (𝑛ℎ𝑛
2𝑟+1)−1 .                                            (2.7) 

𝑚

𝑗=1

𝑘

𝑖=1

 

When ℎ𝑛 → 0 and 𝑛ℎ𝑛
2𝑟+1 → ∞, we get  

lim
𝑛→∞

𝐴2 = lim
𝑛→∞

𝑉𝑎𝑟 (fn
(𝑟)(x)) = 0.                                                    (2.8) 

Substituting (2.6) and (2.8) into (2.5), proof of (I) is finished. 

   Proof of (II): Similar to (2.5), we can show that 

E|fn
(𝑟)(x) − fG

(r)(x)|
2λ

≤ 2|𝐸fn
(𝑟)(x) − fG

(r)(x)|
2λ

+ 2𝑉𝑎𝑟 (fn
(𝑟)(x))

λ

 

≔ 2(𝐵1
2λ + 𝐵2

λ),                                                                        (2.9) 

Due to 𝐴1 and fG
(𝑟)(x) ∈ C𝑠,𝛼, 

E|fn
(𝑟)(x) − fG

(r)(x)| ≤ ∫ |Kr(v)|ℎ𝑛
𝑠−𝑟𝑣 𝑠 |

fG
(r)(𝑥 − ξℎ𝑛𝑣)

𝑠!
|

1

0

ⅆ𝑣 ≤ 𝑐 ∙ ℎ𝑛
𝑠−𝑟 . 

Therefore, taking ℎ𝑛 = 𝑛−
1

2+𝑠, we have 

𝐵1
2λ = 2|𝐸fn

(𝑟)(x) − fG
(r)(x)|

2λ

≤ 𝑐 ∙ 𝑛−
2λ(𝑠−𝑟)

2+𝑠 .                                    (2.10) 

And by (2.8), we obtain 

𝐵2
λ ≤ [𝑐1 ∙ (𝑛ℎ𝑛

2𝑟+1)−1]λ ≤ 𝑐 ∙ 𝑛−
λ(𝑠−2𝑟+1)

2+𝑠 .                                   (2.11) 

Substituting (2.10) and (2.11) into (2.9), the proof of (II) is finished. 

Lemma 2.2. [8] R(δ𝐺 , G) and R(δ𝑛, G) are defined by (1.10) and (2.4), then  
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0 ≤ R(δ𝑛, G) − R(δ𝐺 , G) ≤ 𝑎 ∫ |β(x)|𝑃(|β𝑛(x) − β(x)| ≥ |β(x)|)dx
Ω

. 

3. Asymptotic Optimality and Convergence Rates of Empirical Bayes test Based on Ranked 

Set Sampling 

Theorem 3.1. Assume (C1) and the following regularity conditions 

ℎ𝑛 > 0, lim
𝑛→∞

ℎ𝑛 = 0, lim
𝑛→∞

𝑛ℎ𝑛
5 = ∞, 

∫ θ2dG(θ) < ∞,
Θ

 

𝑓𝐺
(2)

(𝑥) is continuous function,  

hold. Then,  

lim
𝑛→∞

 R(δ𝑛, G) = R(δ𝐺 , G). 

Proof. Lemma 2.2 shows that 

0 ≤ R(δ𝑛, G) − R(δ𝐺 , G) ≤ 𝑎 ∫ |β(x)|𝑃(|β𝑛(x) − β(x)| ≥ |β(x)|)dx
Ω

. 

Applying (1.6) and Fubini theorem, we have 

∫ |β(x)|dx ≤ |𝜃0
2 − 𝛾0

2| +
Ω

∫ θ2dG(θ) + 2|𝜃0| ∫ θdG(θ) < ∞.
ΘΘ

 

Denote 𝑇𝑛(𝑥) = |β(x)|𝑃(|β𝑛(x) − β(x)| ≥ |β(x)|). Obviously, 𝑇𝑛(𝑥) ≤ |β(x)|. Then, by domain 
convergence theorem, we can get 

0 ≤ lim
𝑛→∞

 R(δ𝑛, G) − R(δ𝐺 , G) ≤ ∫ [ lim
𝑛→∞

𝑇𝑛(𝑥)]
Ω

ⅆ𝑥.                                  (3.1) 

    Next, we need only prove that lim
𝑛→∞

𝑇𝑛(𝑥) = 0 holds almost everywhere. By Markov's and Jensen's 

inequality, 

𝑇𝑛(𝑥) ≤ |A(x)|[|𝐸fn
(2)(x) − fG

(2)(x)|
2

]
1
2 + |B(x)|[|𝐸fn

(1)(x) − fG
(1)(x)|

2
]

1
2 

   +|𝐶|[|𝐸f𝑛(x) − f𝐺(x)|2]
1

2.                                                                                                                                  

For fixed x ∈ Ω, r = 0,1,2 and λ = 1, we have 

0 ≤ lim
𝑛→∞

𝑇𝑛(𝑥) ≤ A(x)[ lim
𝑛→∞

E|fn
(2)(x) − fG

(2)(x)|
2

]
1
2 +  B(x)[ lim

𝑛→∞
E|fn

(1)(x) − fG
(1)(x)|

2

]
1
2 

+|𝐶|[ lim
𝑛→∞

𝐸|f𝑛(x) − f𝐺(x)|2]
1

2 = 0,                                                                 (3.2) 

by (I) in lemma 2.1 and lemma 2.2. Substituting (3.2) into (3.1), the proof of theorem 3.1 is finished. 

Theorem 3.2. Assume (C1) and the following regularity conditions 

f𝐺(x) ∈ C𝑠,𝛼, where s ≥ 4, 

ℎ𝑛 = 𝑛−
1

2+𝑠, 

∫ 𝑥𝑚λ|β(x)|1−λdx < ∞,
Ω

 for 0 < λ ≤ 1, and m = 0,1,2, 

hold. Then,  

 R(δ𝑛, G) − R(δ𝐺 , G) = 𝑂 (𝑛
−

λ(s−2)
2(1+𝑠)). 

Proof.  Using Lemma 2.2 and Markov's inequality, we have 
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0 ≤ R(δ𝑛, G) − R(δ𝐺 , G) ≤ 𝑐1 ∫ |β(x)|1−λ|A(x)|λE|fn
(2)(x) − fG

(2)(x)|
λ

dx
Ω

 

+𝑐2 ∫ |β(x)|1−λ|B(x)|λE|fn
(1)(x) − fG

(21)(x)|
λ

dx                 
Ω

 

+𝑐3 ∫ |β(x)|1−λ|C|λE|f𝑛(x) − f𝐺 (x)|λdx                              
Ω

  

= 𝐴𝑛 + 𝐵𝑛 + 𝐶𝑛 .                                                                    (3.3) 

Applying (II) in Lemma 2.1 and the conditions (4)-(5) in the Theorem (3.2), we have 

𝐴𝑛 ≤ 𝑐1𝑛
−

λ(s−2)
2(1+𝑠) ∫ |β(x)|1−λ|A(x)|λdx

Ω

≤ 𝑐4𝑛
−

λ(s−2)
2(1+𝑠).                               (3.4) 

𝐵𝑛 ≤ 𝑐2𝑛
−

λ(s−1)
2(1+𝑠) ∫ |β(x)||A(x)|λdx

Ω

≤ 𝑐5𝑛
−

λ(s−1)
2(1+𝑠).                                     (3.5) 

𝐶𝑛 ≤ 𝑐3𝑛
−

λs
2(1+𝑠) ∫ |β(x)|1−λ|C|λdx

Ω

≤ 𝑐6𝑛
−

λ(s−12)
2(1+𝑠) .                                   (3.6) 

Substituting (3.4)-( 3.6) into (3.3), we have 

R(δ𝑛, G) − R(δ𝐺 , G) = 𝑂 (𝑛
−

λ(s−2)
2(1+𝑠)). 

The proof of theorem 3.2 is finished.  

Remark 3.1.  When λ → 1, 𝑂 (𝑛
−

λ(s−2)

2(1+𝑠)) nears 𝑂 (𝑛−
1

2). 
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