
International Journal of Science Volume 8 Issue 12, 2021

ISSN: 1813-4890

16

Optimization and Incremental Construction of Test Suite for
Integration Testing

Mengqing Tanli1, Ying Zhang2, Yulin Wang2, and Yan Jiang1
1 School of Software, University of South China, Hunan Hengyang 421001, China

2 School of Mechanical Engineering, University of South China, Hengyang 421001, China

Abstract
This paper mainly discussed two aspects of test suite construction in incremental
integration testing. The first aspect is optimization of baseline test suite for integration
testing, in which, how to decrease the executed time by using grey-box approach is
proposed and how to reduce the number of test case with optimal route approach in test
suite construction is consequently investigated. In order to accelerate the speed of
integration testing, the test design is the key task. On one hand, taking into account for
baseline test suite is a key point. On the other hand, considering the incremental
construction is a more frequent point. For the latter, typical examples are applied that
three examples from requirement variety of user is introduced and transforming
processing based on fault-tree analysis is put forward for test case design.

Keywords
Test suite, integration testing, testing optimum, incremental construction.

1. Introduction and Background

Software integration testing, as we known, is the very important part in testing activity [1-3],
and the software defects found in the integration testing is 40% of sum software faults
discovered in all testing tasks [4]. Test-driven programming is excellent programming strategy
for varied requirement, and it is very suitable for small team of software producing. From the
view of regression testing, testing activity imply a lot of test cycles, and figure 1 has shown this
cycle mode of software integration testing for test-driven programming [5-7].

Figure 1. Software integration testing cycle for test-driven programming

International Journal of Science Volume 8 Issue 12, 2021

ISSN: 1813-4890

17

Additionally, in figure 1, we introduce five types of requirement variety as following: (1)
Requirement variety of user - for example, changing of function, adding of function, etc. (2)
Requirement variety of product environment - for example, converting customization to
domain user, etc. (3) Requirement variety of strategy and method - for example, single product
is transformed into product-family, etc. (4) Requirement variety of supporting hardware and
software - for instance, “Windows 98 → Windows XP”, “PC computer → Mobile phone” and
“32bit → 64bit”, etc. (5) Requirement variety of programming language and tools - for instance,
“Borland C++ → Visual C++”.
In order to discuss effectively and systematically the test suite construction of incremental
integration testing, the integration testing processing of PQMS2 (Product Quality Monitoring
Software 2.0) is taken as a typical example. Following will investigate optimization of baseline
test suite for integration testing firstly, and then incremental construction of integration
regression test suite will be discussed in detail, in which three examples from requirement
variety of user is introduced and transforming processing based on fault-tree analysis is
proposed for test design.

2. Optimization of Baseline Test Suite for Integration Testing [8, 9]

Integration testing should synthetically consider speed, quality and cost [8], but the speed
should be regarded as the key point especially for test-driven programming which is aimed at
the fast responding speed and flexibility for varied requirement [9]. Thereupon, optimal point
of integration testing for test-driven programming should be speed firstly.
No matter how, the baseline test suite should be perfectly constructed [10] at the beginning of
integration testing, because it is the front obligatory condition for integration testing. And time
axis of test design of baseline test suite for integration testing has been shown in figure 2.

Figure 2. Time axis of test design of baseline test suite for integration testing

International Journal of Science Volume 8 Issue 12, 2021

ISSN: 1813-4890

18

With reasonable arrangement and consequential testing design activity, the baseline test suite
for PQMS2 is constructed, in terms of schedule in figure 2, and it is finished by means of grey-
box approach [11]. In order to evaluate the achieved efficiency, we have done a brief statistics,
and the table 1 has shown the statistical result of arrangement of test case in baseline test suite
of PQMS2 for grey-box approach.

Table 1. Overall arrangement of test case in baseline test suite
 Initialization and

setting
Basic data
processing

Main function-
inspection data and

control chart
processing

Data
import/export

Report Sum

White-
box

3 10 2 2 2 19

Black-
box

13 19 17 3 2 54

Rate 1:4.3 1:1.9 1:8.5 1:1.5 1:1 1:2.8

As the table 1 shows, the number of test case for black-box in “Basic data processing”(Column
2) is 19, and the number in “Main function- inspection data and control chart processing” is 17 ,
the two items are given prominence to others. We can find that the arrangement of test case is
reasonable for factual scenario. On the other hand, the rate concerning white-box testing and
black-box testing in “Main function- inspection data and control chart processing” achieves
1:8.5, it exhibits that the grey-box approach has got great efficiency to some extent.

2.1. Optimal Strategy of Baseline Test Suite on Execution Time for Grey-Box
Approach [10, 11]

The grey-box strategy is applied in construction of baseline test suite for PQMS2, and the core
essence of grey-box strategy is that white-box testing and black-box testing are reasonably
synthesized with front white-box testing for message handling mechanism. For details of grey-
box approach, please refer related contents of [11]. In order to focus on the key processing and
decrease data volume referring to optimal strategy, we only discuss partial key set of baseline
test suite.
In baseline test suite of integration testing for grey-box approach in PQMS2, we executed the
testing of “adding inspection data and print quality control chart” which are the key processing
in software function. By actual operation of testing, we have got the result of executed time as
listed in table 2.

Table 2. The executed time of partial test suite in PQMS2 /min
 white-box black-box Sum Note

P0-P1 P1-P2-P3-P4

Path rI 0.17 7.15 7.32 Adding data manually, 20 data

Path rII 0.17 10.33 10.50 Importing data from digital gauge, 12 data

Path rIII 0.17 7.91 8.08 Calling data from saving, 60 data

Path rIV 0.17 8.09 8.26 Importing data from Notepad, 40data

Path rV 0.17 4.82 4.99 Importing data from external, 12data

Sum 0.85 25.5 39.15 A1=39.15/5=7.83

International Journal of Science Volume 8 Issue 12, 2021

ISSN: 1813-4890

19

Note that, executed time of front events by white-box testing are: (1) Pop Menu Item - 0.17 min
(listed only in table 2), (2) Menu Item - 0.03 min, (3) Toolbar - 0.03 min and (4) Hot Key -
0.13min. And meaning of processing node in table 2 are: (1) P0 is the start point, (2) P1 is the
entrance point of map function or initial member function, and (3) P2, P3, P4 imply respectively
the point of data saving, data display, and control chart display and print.
From table 2, we can know that the sum of testing executed time is 39.15 min and the average
is 7.83 min for “adding inspection data and print quality control chart”, which present the key
function in baseline test suite of integration testing for applying grey-box technique.
However, testing executed time applying black-box testing only are following:
Testing path I—Pop Menu Item,
M1=39.15 min.
Testing path II—Menu Item,
M2=5×0.03+(17.58+1.01+14.89)=33.63 min.
Testing path III—Toolbar,
M3=33.63 min.
Testing path IV—Hot Key,
M4=5×0.13+(17.58+1.01+14.89)=34.13 min.
Sumarizing,

M= M1 +M2+ M3+ M4=140.54 min. (1)

And the average value is:

A2=140.54/4=35.135min. (2)

So, the testing executed efficiency of the key function in baseline test suite for applying grey-
box technique is:

C = A2/ A1 = 35.135/7.83 = 4.49 (3)

As a result, we can know that the efficiency is accelerated 449% for integration testing of
“adding inspection data and print quality control chart” in PQMS2.That is, one tester could do
4.49 times workload applying grey-box technique based on message than the method of testing
all message paths.

2.2. Optimal Strategy of Baseline Test Suite on Number of Test Case
Correspondingly, in order to accelerate the speed of integration testing, decreasing the number
of test case may be a direct way, including the processing in baseline test suite construction and
the processing of incremental test design which will be discussed in section 3 [10]. Optimization
of number of test case in baseline test suite construction should be transformed into a problem
of optimal route with condition, as shown in figure 3.
In figure 3, solid circle is the test case set and broken circle implies the unused repeated test
case set without applying grey-box approach. Consequently, “-·-” group is function involved,
and “····”group presents white-box testing involved. At the same time, the broken arrow line
implies virtual path without applying grey-box approach corresponding to the broken circle,
for which “S4→MP→I5” is only given and others are abbreviated. Finally, the meanings of codes

International Journal of Science Volume 8 Issue 12, 2021

ISSN: 1813-4890

20

are shown in table 3-5, which table 3 demonstrates the code meaning of white-box testing and
table 4 depicts the code meaning of black-box testing for key processing while table 5 is the
code of black-box testing for preparation of basic data in figure3. Please note that DC is not
directly influence the monitoring category and considered in unit testing.

Figure 3. Optimal route of integration testing based on empirical history

Table 3. The code of white-box testing in figure3

Code Meaning Code Meaning

WI1 White-box testing of adding inspection data W S1 White-box testing of basic setting

WMP White-box testing of modifying inspection process WAP White-box testing of adding inspection process

WAT White-box testing of adding part WMT White-box testing of modifying part

WAC White-box testing of adding product WMC White-box testing of modifying product

WAF White-box testing of adding division WMF White-box testing of modifying division

International Journal of Science Volume 8 Issue 12, 2021

ISSN: 1813-4890

21

Table 4. The code of black-box testing for key processing in figure3
Code Meaning Code Meaning

I1 Input manually inspection data-Median chart D1 Adding data→Display and print Median-R chart
S1 Setting→display and print Median-R chart C1 Modifying inspection data ID
I2 Import inspection data by digital gauge D2 Adding data→Display and print X-Rs chart
S2 Setting→display and print X-Rs chart DS Deleting inspection data
I3 Input manually saving data and modification D3 Adding data→Display and print XAve-R chart

S3 Setting→display and print XAve-R chart I4
Input inspection data saving using Notepad-NP
chart

D4 Adding data→Display and print NP chart S4 Setting→display and print NP chart

I5
Input manually inspection data-modifying-
deleting D5 Adding data→Display and print P chart

S5 Setting→display and print P chart I6 Input manually saving inspection data
D6 Adding data→Display and print C chart S6 Setting→display and print C chart

I7
Input manually saving inspection data and
deleting D7 Adding data→Display and print U chart

S7 Setting→display and print U chart

As demonstrated in figure 3, it is easy to find that total number of test case set is 45 in this
partial test suite for the key processing in PQMS2, and the number of saving is 7 (the top-right
of figure 3 with broken circle). But this result is got when preparation of inspection data is only
taken into account. Of course, the percent of saving is easily given by:

13.5%%100
745

7

c

Table 5. The code of black-box testing for preparation of basic data in figure3
Code Meaning Code Meaning

AP Adding inspection process MP Modifying inspection process
DP Deleting inspection process AT Adding part
MT Modifying part DT Deleting part
AF Adding division MF Modifying division
DF Deleting division AC Adding product
MC Modifying product DC Deleting product

Otherwise, if considering the preparation of basic data – “AP, AT, AC, AF”(also with broken
circle), the number of saving is 11, and the percent of saving is:

%6.19%100
1145

11

c

Table 6. Efficiency of saving number of test case set in baseline test suite
 White-box Black-box Sum Saving Percent Memo
1 10 35 52 7 13.5% Only preparation of inspection data is considered
2 10 35 56 11 19.6% Considering the preparation of basic data

We can conclude that it may cut down 19.6% test case in optimal test design for baseline test
suite construction. Summarizing, efficiency of saving number of test case set in baseline test
suite of integration testing is listed in table 6.

International Journal of Science Volume 8 Issue 12, 2021

ISSN: 1813-4890

22

3. Incremental Construction of Regression Test Suite based on Fault-Tree
Analysis

Before incremental testing, we should confirm that construction of baseline test suite is finished.
And incremental construction of regression test suite must maximize the reuse of baseline
results to decrease the number of test case and improve testing efficiency [10].
As aforementioned in figure 1, the advantage of test-driven programming is its good responding
characteristics for user requirement. How to transform the requirement variety into changing
of test design would be a very important issue in test-driven programming and testing activity.
At first, we can conclude that there are three kinds of derivation of requirement variety from
user, that is, investigation and interview of users and customers, backward information of user
on internet, and interaction information of user on the spot. The following discussion will be
introduced according to the three kinds of gathering routes.
Without loss of generality, when user has new requirements as following:
(1) Requirement I - Coordination of R chart should be independent in XAve-R chart - derived
from investigation and interview of customers.
(2) Requirement II - Batch restoring of inspection data - derived from backward information of
user on Internet.
(3) Requirement III - Consistence testing is necessary for adding division and department -
derived from interaction information of user on the spot.
In terms of these requirement varieties, programmer would modify the codes and submitted to
regression testing. As a consequence, incremental construction of regression test suite
occurred for testing engineer.
We should notice that the procedure of incremental construction of regression test suite is a
cooperation process between testing engineer and programmer, and it is also an interaction
testing activity to find software faults and failures by familiarizing testing object.
Requirement I.

Figure 4. Fault-tree analysis for requirement I

International Journal of Science Volume 8 Issue 12, 2021

ISSN: 1813-4890

23

In investigation and interview of users and customers, “coordination of R chart should be
independent in XAve-R chart” is gathered as an important requirement. Thereupon, Adding
coordination-offset coefficient for R chart is necessary respectively in XAve-R chart.
Before the construction of regression test suite, the dependency analysis must be done to reveal
the mutual relationship and influence conducted by programming modification. Fault-tree
analysis is very important tool for testing engineer, and figure 4 has shown the fault-tree
analysis for this user requirement [12, 13].
In figure 4, the symbol A presents the top event of fault-tree, and Ai,j,k…presents the middle
event of fault-tree, while Ci is the additional condition. Correspondingly, details are depicted in
table 7.

Table 7. The top and middle event of fault-tree analysis for requirement I
Code Event statement Code Event statement

A
Adding coordination-offset coefficient for R chart is
necessary respectively in XAve-R chart A33

Disposing for GUI influence in
OnDraw()

A1 Adding unit in GUI and variables in .cpp A34 Adding data interface parameters

A2
Adding member in View class, Dialogue class and their
objects A321 Disposing in global initialization

A3 Adding member in data interface A3211
Disposing for influence -
OnProcessUpdate()

A31 Disposing for data saving interface C1 X21 is done before X22

A32 Disposing for data gathering interface C2 A34 is done before A33 , A32 and A31

Consequently, Xi,j,k…presents the final event of fault-tree, and table 8 has demonstrated the
detail meaning of the code.

Table 8. The final event of fault-tree analysis for requirement I
Code Event statement Code Event statement

X11

Adding static text, edit box controls and their
variables

X322

Disposing of data getting in OnDraw() –
GetSetting()

X21

Declaration of “int RChart_offset”

X323

Disposing of data getting in OnUpdate()–
etSetting()

X22

 Disposing in dialogue initialing – InitDialog()
X33

Disposing for GUI influence in OnDraw()-
RChart_offset

X23 Disposing in View class – OnSetfigure() X341 Adding definition of unit in strSetting[]
X31

Disposing in data saving – OnSaveSetting()

X342

Adding disposing of chart initialization for
definition of unit in strSetting[]

X321

Disposing for influence in calling –
OnGetCurrentProcess()

We can do test design according to the results of fault-tree analysis, that is to say, according to
the final event of fault-tree, choosing reasonable test case form baseline test suite or designing
new test case and adding them into test suite. As a result, table 9 is the disposing result in detail.

International Journal of Science Volume 8 Issue 12, 2021

ISSN: 1813-4890

24

Table 9. Choice a and adding b of test case for requirement I
ID of test case Testing content Referring

PQMS2-ENT-INT-TC304-MF Add division and department from sheet X341
PQMS2-ENT-INT-TC307-MF Add division and department to monitoring category X341

PQMS2-ENT-INT-TC314-MF Add product from sheet X341
PQMS2-ENT-INT-TC324-MF Add part from sheet X341
PQMS2-ENT-INT-TC327-MF Add product_ part to monitoring category X341
PQMS2-ENT-INT-TC334-MF Add inspection process form toolbar X341
PQMS2-ENT-INT-TC337-MF Add inspection process to monitoring category X341
PQMS2-ENT-INT-TC360-MF Input test data from saving manually X341
PQMS2-ENT-INT-TC906-MF

Display and print XAve -R chart from monitoring
category

X11, X21, X322, X341,

X342。
aUnit testing is not considered.
bAdding test case in unit testing - PQMS2-ACF-UNI-TC001～TC025-MF, etc.

Requirement II.
As a requirement variety, “Batch restoring of inspection data” is derived from backward
information of user on internet [14, 15].
This example is a typical requirement variety with new unit and module, and the fault-tree
analysis and test design should be conducted considering the follows.
(1) For test-driven programming, in incremental construction of test suite, integration testing
should be taken into account firstly.
(2) If organizing with pair-wise programmer and test engineer [16], there are two types of
concrete task arrangement. The first one is idle mode, in which tester can do some preparation
of testing when idle gap arrived. Another one is parallel mode, in which the pair-wise can do
programming and testing in parallel.
(3) For test design of integration testing, test engineer should keep cooperation with
programmer.
(4) For test design of unit testing, test engineer may only design test case of important unit
according to confirmation of test manager.

Table 10. The event of fault-tree analysis for requirement II
Code Event statement Code Event statement

A1

Add controls from main/pop-up menu and
event map A2 Add member function statement and body

A21 Add member function statement A22 Add member function body
X11 Add controls from main menu/pop-up X12 Add event map
X21 Add member function statement in MainView.h X221 Attributes statement and initialization

X222

Judge if inspection process is exist, and get
basic information e.g. inspection process, part,
etc.

X223

Searching all target file name

X224

Judge if this inspection data is exist

X225

Add inspection data ID into
INSPECTIONDATADIRECTORYNAME

X226

Add filename and all data of inspection data file
into SAVINGDIRECTORY

C1

Sequence should be
"X221→X222→X223→X224→X225→X226"

International Journal of Science Volume 8 Issue 12, 2021

ISSN: 1813-4890

25

Similarly, after the task arrangement of manager, programmer modified the code and
submitted to regression testing. As a consequence, testing engineer analyzed the original code
with fault-tree tool, and figure 5 has shown the fault-tree analysis for requirement II.

Figure 5. Fault-tree analysis for requirement II

In figure 5, “Batch restoring of inspection data is necessary” is the top event, and it noted with
“A”. Consequently, Ai,j,…presents the middle event of fault-tree, and Xi,j,k…is the final event of
fault-tree, while Ci is the additional condition. Correspondingly, details are demonstrated in
table 10.
According to the results of fault-tree analysis in figure 5, the final events of fault-tree in table
10 have implied the concrete subject of test design. Thus, the disposing result has been
demonstrated in table 11.

Table 11. Choice and adding of test case for requirement II
ID of test case Testing content Referring

PQMS2-ENT-INT-
TC372-AD White-box testing for POP-Menu X11, X12, X21

PQMS2-ENT-INT-
TC373-AD White-box testing for Menu-item X11, X12, X21

PQMS2-ENT-INT-
TC374-AD White-box testing for Hot-key X11, X12, X21

PQMS2-ENT-INT-
TC145-AD Integration testing of batch restoring inspection data

X11, X12, X21, X221, X222,
X223, X224

PQMS2-FRD-UNI-
TC001

Testing whether output of starting from monitoring
category is correct or incorrect

X11, X12, X21, X221, X222

PQMS2-FRD-UNI-
TC002

Testing the output of starting from Menu-item for correct
inspection process

X11, X12, X21, X221, X222

PQMS2-FRD-UNI-
TC003

Testing the output of starting from Menu-item for incorrect
inspection process

X11, X12, X21, X221, X222

International Journal of Science Volume 8 Issue 12, 2021

ISSN: 1813-4890

26

Requirement III.
As the interaction information of user on the spot, “Consistence testing is necessary for adding
division and department” is proposed as an important requirement. Similarly, programmer
modified the code and submitted to the tester for regression testing, and testing engineer
analyzed the original code, and figure 6 has shown the analysis result applying fault-tree [12,
13].

Figure 6. Fault-tree analysis for requirement III

For fault-tree analysis in figure 6, correspondingly, the symbol A presents the top event of fault-
tree “Consistence testing is necessary for adding division and department”, and Ai,j…presents
the middle event, while Ci is the condition. And details meaning of codes are shown in table 12.

Table 12. The top and middle event of fault-tree analysis for requirement III
Code Event statement Code Event statement

A1 Using the mode of sheet adding A2
Using the mode of category
adding

A11
Influence in adding from sheet –
CDivisionDIALOG::OnButtonAdd(),CDivisionDIALOG::
OnButtonAddDivisionToTree()

A21 Influence in adding from category
– CMainView::OnAddDivision()

A22
Influence in adding from category –
CDivisionDIALOG::OnButtonAddDivisionToTree() C1 Testing A1 before testing A2

Table 13. The final event of fault-tree analysis for requirement III
Code Event statement Code Event statement
X11 Testing if division code is empty. X23 Testing if it is item of product-part.
X12 Testing if division name is empty. X24 Testing if it is item of division or department.
X13 Testing if factory name is empty. X31 Testing if this item already existed.
X14 Testing if adding is finished. X32 Testing if item number is bigger than 10.
X21 Testing if it is item of inspection data. X33 Testing if item adding can be finished.
X22 Testing if it is item of inspection process.

International Journal of Science Volume 8 Issue 12, 2021

ISSN: 1813-4890

27

In terms of the results of fault-tree analysis in figure 6, the final events of fault-tree in table 13
have implied the detail subject of test design. In general, test design may include two aspects -
choosing reasonable test case form baseline test suite or designing new test case and adding
them into test suite [16-19]. However, the node layer and position of fault-tree must be taken
into account for test design, and distributing between unit testing and integration testing
should be arranged reasonably [19]. Consequently, table 14 has demonstrated the disposing
result in detail.

Table 14. Choice and adding of test case for requirement III
ID of test case Testing content Referring

PQMS2-ENT-INT-TC305-MF Integration testing-Testing if division code is empty. X11

PQMS2-ENT-INT-TC306-MF Integration testing-Testing if division name is empty. X12
PQMS2-FBA-UNI-TC001 Unit testing-void CDivisionDIALOG::OnButtonAdd() X13

PQMS2-ENT-INT-TC304-MF Integration testing-Testing if adding is finished. X14
PQMS2-FAD-UNI-TC001 Unit testing-void CMainView::OnAddDivision() X21
PQMS2-FAD-UNI-TC002 Unit testing-void CMainView::OnAddDivision() X22
PQMS2-FAD-UNI-TC003 Unit testing-void CMainView::OnAddDivision() X23
PQMS2-FAD-UNI-TC004 Unit testing-void CMainView::OnAddDivision() X24
PQMS2-FBA-UNI-TC002 Unit testing-void CDivisionDIALOG::OnButtonAddDivisionToTree() X31
PQMS2-FBA-UNI-TC003 Unit testing-void CDivisionDIALOG::OnButtonAddDivisionToTree() X32

PQMS2-ENT-INT-TC307-MF Integration testing-Testing if item adding can be finished. X33

4. Result and conclusion

Construction of integration test suite must hold the priority criterion of testing efficiency
mainly focusing on testing speed, and there are two methods to do. The first one is decreasing
the execution time of test case, for which, we have applied the grey-box approach. The second
one is reducing the number of test case, for which, we have a improved resolution by optimal
route of integration testing. For incremental integration testing, test design includes two main
aspects, that is, choosing reasonable test case from test suite and conducting new test case
according to fault-tree analysis. The analysis tool of fault-tree may be applied for dependency
analyzing for test design, not only used in controls adding for visual GUI software, but also used
in software unit adding and member function adding. Correspondingly, some experiences and
skills should be utilized in incremental construction of test design: (1) Integration testing
should be taken into account firstly for test-driven programming. (2) Two types of task
arrangement, the idle mode and the parallel mode, can be applied if organizing with pair-wise
programmer and test engineer. (3) Test engineer should keep cooperation with programmers
for test design of integration testing. (4) Test engineer may only design test case of important
unit according to confirmation of test manager in test design of unit testing.

References

[1] J. S. Bradbury, J. R. Cordy, J. Dingel. An Empirical Framework for Comparing Effectiveness of Testing
and Property-Based Formal Analysis, Proceedings of the ACM SIGPLAN-SIGSOFT Work on Program
Analysis for Software Tools and Engineering. (Lisbon, Portugal, 2005). p. 160-170.

[2] P. Runeson. Guidelines for conducting and reporting case study research in software engineering,
Empirical Software Engineering, Vol. 14 (2009), No. 2, p. 131–164.

[3] B. W. Boehm. Classics in software engineering (New Jersey: Yourdon Press, USA 1979).

International Journal of Science Volume 8 Issue 12, 2021

ISSN: 1813-4890

28

[4] Alessandro Orso, Integration Testing of Object-Oriented Software, POLITECNICO DI MILANO.2001.
[5] K. Beck, Test-Driven Development by Example (China Electric Press, China 2003).
[6] H. Do, G. Rothermel, S. Elbaum, Infrastructure Support for Controlled Experimentation with

Software Testing. Proceedings of the 2004 International Symposium on Empirical Software
Engineering. (USA, April 13, 2005). p. 60-70.

[7] MENGQING TANLI, YAN JIANG, YULIN WANG, et al., Infrastructure Building of Software Testing for
Engineering Software Based on Cooperation of University and Company. Proceedings of 2020 the
10th International Workshop on Computer Science and Engineering-WCSE2020. (Shanghai, China,
June 19-21, 2020). p. 18-26.

[8] B. Fu, Course of Software Testing Technology (Tsinghua University Press, China 2014).(In Chinese).
[9] Mengqing TANLI, Ying ZHANG, Yan Jiang, et.al., Baseline Test Suite Construction of Smoke Test for

Extreme Programming. Proceedings of 2021 International Conference on Communication
Engineering and Logistics Management. (Shanghai, China, July 24-26, 2021).

[10] XU Yuan-yuan. A Study of Test Case Reuse Based on CBR, Computer Engineering & Software, Vol.
36 (2015), No. 9, p. 117-120. (In Chinese).

[11] Mengqing TANLI, Ying Zhang, Yulin Wang, et.al., Grey-box Technique of Software Integration
Testing Based on Message. Proceedings of 2021 3rd International Conference on Artificial
Intelligence and Computer Science. (Beijing, China, July 29-31, 2021). p. 198-206.

[12] R. Patton, Software engineering (Pearson Education Inc., USA, 2006).
[13] TANLI Meng-qing, ZHANG Ying, WANG Yu-lin. Reasearch on Fault Tree Technique in Software

Regression Testing, Computer Engineering & Software, Vol. 41 (2020), No. 9, p. 5-8, 25. (In Chinese)
[14] Dan Tang, Mengqing TanLi, Yan Jiang. Product Quality Monitoring of Shewhart Chart Based on

Function integration for Manufacturing Factory. Proceedings of the 4th Annual International
Conference on Information System and Artificial Intelligence, (Changsha, Hunan, China, May 17-18,
2019) p. 123-130.

[15] TANLI Meng-qing, ZHANG Ying, WANG Yu-lin. System Testing Based on Software Performance.
Computer Engineering & Software, Vol. 41(2020), No. 11, p. 1-4, 25. (In Chinese).

[16] F. Li, Software Testing Technology (Mechanical Industry Press, China 2016).(In Chinese).
[17] G. J. Myers. The Art of Software Testing (New Jersey, USA 2004).
[18] Elfriede, Dustin, Effective Software Testing: 50 Specific Ways to Improve Your Testing (China

Electric Press, China 2004).
[19] Chen Zhanhua, Research and Implementation of Test Method in Task Arrangement of Resource

Satellite, Radio Engineering, Vol. 35 (2005), No. 2, p. 62-64. (In Chinese).

