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Abstract 

As one of the research hotspots of computer vision technology, object tracking plays an 

important role in many fields, such as intelligent monitoring and human-computer interaction. 

Researchers in different fields have proposed many different tracking algorithms. The SiamFC 

(Siamese Fully-Convolutional) has received lots of attention since it was raised. However, the 

accuracy and the discrimination ability of this algorithm is not enough. In this paper, we build 

a Siamese Networks based on ShuffleNet, named SF_Siam, for object tracking. The basic 

network of SF_Siam is ShuffleNet, which is composed of no-padding inside cropped residual 

units. In order to discuss the effect of no-padding inside cropped residual units, 3 residual units 

are proposed and discussed in this paper. Some empirical results are shown in the experiment 

part. Comparing with the state-of-the-art trackers, the proposed tracker could achieve 

comparable performance in multiple benchmarks. 
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1. Introduction 

Object tracking is one of the most fundamental and challenging tasks in computer vision. Given the 

size and position of the target in the first frame, the task of object tracking is to predict the size and 

position of the target in all the following frames in a video sequence [1,2]. Target tracking technology 

plays an important role in missile guidance, intelligent monitoring systems, video retrieval, automatic 

driving, human-computer interaction and industrial robots. Although many tracking methods have 

made considerable progress in the past decade, it is still a very challenging task due to various 

negative scenes such as occlusion, fast motion, scale changes, and complex backgrounds [3]. 

The latest target tracking research methods are mainly based on two frameworks: discriminative 

correlation filters (DCF) and fully convolutional siamese networks. DCF uses the circular shifting of 

training samples and fast learning correlation filters in the Fourier frequency domain, which has good 

calculation performance and tracking accuracy. Therefore, DCF-based trackers has received 

widespread attention since MOSSE [4] first exploited it. However, most DCF-based trackers use 

offline pre-trained convolutional neural networks (CNN) for feature extraction, instead of using 

stochastic gradient descent (SGD) for online parameter fine-tuning. As a result, DCF based trackers 

benefit little from the end-to-end trainable networks. And the tracker based on the fully convolutional 

siamese networks uses the convolutional neural network to extract features and predicts the position 

of the target by comparing the similarity between the search area and the template area, showing great 

potential in high-performance visual tracking. 

SiamFC [5] is a typical tracker based on fully convolutional siamese networks. It uses a fully 

convolutional network to extract the features of the target area and the search area, and then uses the 

cross-correlation operation to evaluate the search area to obtain the target location. It allows the 

SiamFC to obtain a greater improvement in speed and accuracy. However, even with a large amount 

of training data, SiamFC still has a performance gap to the best online tracker. 

In this paper, we aim to improve the robustness and recognition accuracy of SiamFC. It is widely 

understood that, SiamFC uses the no-padding AlexNet [6] as the basic network structure. The depth 

of the AlexNet network is relatively shallow, and the features extracted by AlexNet is lack of 
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discrimination. To overcome this restriction, we build a Siamese Networks based on ShuffleNet [7], 

named SF_Siam, for Object tracking. Different from standard ShuffleNet, our network is composed 

of no-padding inside cropped residual units. We tested our tracker on OTB2013 [8], OTB2015 [9], 

VOT2016 [10] and VOT2017 [11]. Results show that our tracker achieves satisfactory performance.  

The rest of the paper is organized as follows. Section 2 introduces the most closely related works 

briefly. Section 3 describes the main part of the proposed approach. Section 4 carries out the 

experiment and presents the results while Section 5 draws a short conclusion. 

2. Related works 

2.1 Deep network 

With the proposal of modern deep architecture AlexNet by Alex et al. [6] in 2012, research in network 

architectures is rapidly growing and many sophisticated deep architectures are proposed, such as 

VGGNet [12], GoogleNet [13], ResNet [14] and MobileNet [15]. These deep frameworks not only 

provide a deeper understanding of the design of neural networks, but also push forwards the state-of-

the-arts of many computer vision tasks like object detection [16], image segmentation [17], and 

human pose estimation [18]. Similarly, the use of deep networks in object tracking has also achieved 

excellent tracking performance. 

2.2 Siamese Network Based Trackers 

Object tracking can be modeled as a similarity learning problem. By comparing the target image patch 

with the candidate patches in search region, we can track the object to the position that gets the highest 

similarity score. A significant advantage of this method is that it requires almost no training online 

and thence real-time tracking can be easily achieved. 

The similarity learning of deep networks usually uses the Siamese network architectures. GOTURN 

[19] uses the Siamese network as feature extractor and uses fully connected layers as the fusion tensor. 

It can be seen as a regression method by using predicted bounding box in the last frame as the only 

one proposal. Re3 [20] employs a recurrent network to get better feature produced by the template 

branch. Inspired by correlation based methods, Siamese-FC [5] first introduces the correlation layer 

as fusion tensor and highly improves the accuracy. However, even if the SiamFC algorithm is trained 

with a large amount of data, its robustness and discrimination ability still have a certain gap compared 

with the state-of-the-art trackers. 

There are a large number of follow-up work of SiamFC. CFNet [21] introduces correlation filters for 

low level CNNs features to speed up tracking without accuracy drop. And EAST [22] attempts to 

speed up the tracker by early stopping the feature extractor if low-level features are sufficient to track 

the target. SA-Siam [23] implemented a Siamese network with two branches, one branch is used for 

semantic feature extraction, and the other is used for appearance feature extraction. DaSi-amRPN [24] 

designed a new offline training sampling strategy. However, the above trackers use the no-padding 

AlexNet as the basic network structure. AlexNet cannot get deeper features, which have rich semantic 

information and is important for some special scenes such as motion blur and huge deformation. 

Therefore, this paper proposes SF_Siam to enhance the performance of SiamFC by improving the 

basic network.  

3. Our Approach 

Aiming at the limitations of the typical convolutional neural network structure in object tracking, we 

proposes Siamese Networks for Object Tracking based on ShuffleNet. However, simply training a 

Siamese tracker by directly using ShuffleNet does not obtain the expected performance improvement. 

The main reason is the intrinsic restrictions of the Siamese trackers. Therefore, we first give a brief 

analysis on the SiamFC. 

3.1 Analysis on SiamFC 

SiamFC formulates visual tracking as a problem of image similarity measurement. For the target 

image z and the candidate image x, the network learns a mapping function f(z, x). When the target 
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image z and the candidate image x are the same target, f(z, x) gets a higher similarity score. Otherwise, 

f(z, x) gets a lower similarity score. The mapping function f(z, x) can be obtained by training with a 

large number of images.  f(z, x) can be formula as: 

f(z, x) = φ(x) *φ(z) + b1                                                         (1) 

Where φ(.) denotes convolutional embedding function, b1 denotes a signal which takes value b ∈ R 

in every location. 

This simple matching function used in Siamese tracker has an intrinsic restriction for strict translation 

invariance, f(z, x[Δi]) = f(z, x)[Δi], where [Δi] is the translation shift sub window operator, which 

ensures the efficient training and inference. Li [25] found that padding in deep networks will destroy 

the strict translation invariance. In addition, the use of padding in the target tracking algorithm will 

also affect the prediction and positioning of the target. In the convolution process, adding padding to 

the input data is equivalent to adding noise around it. As the network gradually deepens and the 

convolutional layer increases, more and more noise is added around the original input data, which 

makes it easy for the network to generate a priori information: there is no target in the boundary area 

of the input data. Therefore, when the target moves to the boundary, it is prone to lose track targets. 

3.2 ShuffleNet_based Siamese Networks for Object Tracking 

The framework of the Siamese networks based on ShuffleNet (SF_Siam) is shown in Fig.1. The 

framework is divided into three parts, namely network inputs, feature extraction and similarity 

decision. The network inputs are the search image x and the target image z. And the image processing 

is similar to SiamFC. The feature extraction is mainly composed of an improved ShuffleNet. The 

similarity decision section is similar to the SiamFC, which uses a cross-correlation layer to measure 

the similarity between the target image and the search image. This paper focuses on the feature 

extraction. 

 

Fig. 1 The framework of the Siamese networks based on ShuffleNet (SF_Siam) 

 

The core of ShuffleNet is the use of pointwise group convolution and channel shuffle, which reduces 

the amount of calculation while maintaining model accuracy. Therefore, this article will make 

improvements based on the ShuffleNet to make it more suitable for target tracking, which will be 

described in detail below. 

As shown in Fig. 2(a) and (b), the basic unit of shuffleNet consists of four convolution layers and a 

jump connection layer, which is improved on a residual unit. The first convolutional layer on the right 

of the unit is a 1x1 group convolution, which groups the feature maps of the input layer, and then 

uses different convolution kernels to perform convolution operations on each group to reduce the 

amount of convolution calculations. The channel shuffle is added after the group convolution. It 

randomly mixes the output features of the previous layer to ensure that the input of the subsequent 

convolutional layer comes from different groups. And the last two convolutional layers are 3x3 

depthwise convolution and 1x1 group convolution. At the end of the unit, a jump connection layer is 

used to connect the inputs and the outputs of the right convolutional layer. The function of the jump 
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connection layer is to return the gradient in the neural network, so as to prevent the diffusion of the 

network gradient due to excessive network layers. When stride=1, the input of the unit is the same as 

the output of the right convolutional layer and can be added directly (as shown in Fig.2(b)). When 

stride=2, the size of the feature map output by the right convolutional layer is reduced, which is 

inconsistent with the input of the unit. To solve this problem, ShuffleNet uses a 3x3 avgpool operation 

with stride=2 on the inputs. Finally, connect the obtained feature map with the output of the 

convolutional layer. The unit of this structure enables ShuffleNet to greatly reduce the computational 

complexity of the model while maintaining accuracy. 

 

 

Fig. 2 ShuffleNet basic units 

 

Since the padding of the deep network will destroy the strict translation invariance of the Siamese 

network, and it will also interfere with the target category prediction and positioning. We proposes 

an internal clipping residual unit based on the unit of ShuffleNet to make it better for object tracking. 

As shown in Fig.2(c), the internal clipping residual unit is improved on the basis of Fig.2(b). Firstly, 

we change the 3x3 depthwise convolution with padding=1 to the 3x3 depthwise convolution with 

padding=0. Then crop the input feature to make it the same size as the output feature of the 

convolutional layer. Finally, add the input and the output of the convolutional layer. Finally, we use 

element-wise summation to merge inputs and convolutional layer outputs. 

We use the internal clipping unit to build the network, and the dimensions of the parameters and 

activations are given in Table 1. It should be noted that in the ShuffleNet, we only modified the 

residual unit with stride=1, and the residual unit with stride=2 still uses the original unit like Fig.2(a). 

What’s more, other 3x3 convolutions on the ShuffleNet will no longer use padding. 

 

Table 1. ShuffleNet architecture 

Layer for search for exemplar KSize Stride Repeat Output channels 

Input 255 x 255 127 x 127    3 

Conv1 253 x 253 125 x 125 3 x 3 1 1 24 
Maxpool 126 x 126 62 x 62 3 x 3 2  24 

Stage2 
62 x 62 

58 x 58 

30 x 30 

26 x 26 
 

2 

1 

1 

2 
240 

Stage3 
28 x 28 

22 x 22 

12 x 12 

6 x 6 
 

2 

1 

1 

3 
480 

Conv2 22 x 22 6 x 6 1 x 1 1 1 256 
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3.3 Training the network 

Similar to SiamFC, SF_Siam takes (z, x) as input. The convolutional network used to extract features 

is the modified ShuffleNet, and the features extracted are denoted by φ(.). The response map from 

the SF_Siam can be written as: 

h(z,x)=corr(φ(z),φ(x)).                                                          (2) 

Where corr(.) is the correlation operation. Given the response map D ∈ R2 of the network, we suggest 

that an element u ∈ D is a positive sample if it is within radius R of the center: 

.                                                   (3) 

Where k denotes the total stride of the network, c is the target center. For all training pairs, the 

corresponding labels are calculated by Eq.(3). We add a logistic loss layer to train the network at the 

end of the SF_Siam network: 

l(y,v)=log(1+exp(-yv)).                                                          (4) 

Where y ∈ {+1, -1} represents the ground-truth label for each position u ∈ D in the score map. v 

denotes the real score of a single target-candidate pair returned by the model. We define the loss of a 

score map to be the mean of the individual losses: 

.                                                  (5) 

The parameters of the network θ are obtained by applying Stochastic Gradient Descent (SGD) to the 

problem: 

.                                                   (6) 

4. Experiments 
4.1 Implementation Details 

Our approach is trained offline on the GOT-10k [26] video dataset. Among a total of more than 10,000 

sequences. It contains a majority of 563 object classes and 87 motion patterns, resulting in a scale of 

1.5 million bounding boxes. The initial parameters of the network follow a Gaussian distribution, and 

are scaled according to the improved Xavier method [27]. Our network is trained with stochastic 

gradient descent (SGD). The gradients for each iteration are estimated with mini-batches of size 8, 

and the learning rate is decreased in log space from 10-2 to 10-5. We extract image pairs from GOT-

10k by choosing frames with interval less than 100. And adopt exemplar images of 127×127 pixels 

and a search images of 255×255 pixels. 

In order to solve the scale variation of the target, we search for the object over three scales 1.0375{-

1,0,1}. And the score map was upsampled from 17×17 to 272 × 272 by using bicubic interpolation. Our 

method is implemented using TensorFlow on a GeForce GTX 1080 Ti. 

4.2 Some analyses of the residual unit 

In this section, we show some results and analyses of different residual unit of the ShuffleNet. In 

order to discuss the effectiveness of the internal clipping residual unit, we design 3 kinds of residual 

unit for ShuffleNet, one of them is internal clipping residual unit (as shown in Fig.2(c)), and the others 

are shown in Fig.3(a) and (b). They replace the internal cropping with 3x3 max-pool and 3x3 avg-

pool respectively. We use these 3 kinds of residual units to build Siamese networks based on 

ShuffleNet and test them on OTB100 and OTB2013 respectively. 

Fig.4 and Fig.5 shows the precision and success plots of SiamFC and the 3 kinds of SF_Siam 

architectures in OTB2013 and OTB100. In order to ensure the comparability of the experiment and 

better reflect the influence of different networks on the tracking results, SiamFC is also trained in 

GOT-10K. As shown in Fig.4 and Fig.5, compared with the other 2 network architectures, SF_Siam 

shows the best performance of both precision and success plots in all the two data sets. And compare 

with SiamFC, SF_Siam also has a significant improvement in both precision and success plots. 
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Fig. 3 Kinds of residual units 

 

 

Fig.4 The precision and success plots of SiamFC and the 3 kinds of SF_Siam architectures in 

OTB2013. 

 

 

Fig.5 The precision and success plots of SiamFC and the 3 kinds of SF_Siam architectures in 

OTB100. 
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The results in Fig.4 and Fig.5 indicates that for the residual unit, although a small amount of features 

will be discarded by the clipping in the jump connection, it will not affect the final features extracted 

by the target. Because the main function of the jump connection is to return the gradient, the input of 

the jump connection are also used as the input of the right convolutional layer. The convolutional 

layer further extracts features from this input, and then passes them to the next structural unit through 

addition. Therefore, the main source of the output features of the residual unit is the convolutional 

layer on the right. But using pooling layer to reduce dimension will lose a lot of original information, 

which will affect the final feature extraction. 

4.3 Result on OTB2015 

OTB2015 contains 100 sequences collected from commonly used tracking sequences. And the two 

standard evaluation metrics on OTB2015 are success rate and precision. In this experiment, we 

compared SF_Siam with ECO-HC [28], SRDCF [29], Staple [30], DSST [31], SiamFC, 

SRDCFdecon [32], BACF [33], LCT [34] and LMCF [35] on OTB100. The precision plots and 

success plots of one path evaluation (OPE) are shown in Fig.6. The comparison shows that the 

algorithm proposed in this paper is 0.2% lower than ECO-HC in terms of Success scores and 

outperforms other state-of-the-art trackers. 

 

 

Fig. 6 Success plot and precision plot of OTB100 

 

4.4 Result on VOT2016 

The VOT2016 data set consists of 60 videos. It mainly evaluates the performance of a tracker based 

on accuracy and robustness. Accuracy is obtained by calculating the average overlap rate between the 

experimental results and the ground truths. And robustness is defined by the number of failures of the 

tracker. A failure is defined as when the overlap ratio between the predicted results and the ground 

truths is zero. Equivalent Filter Operations (EFO) is used to evaluate the speed of a tracker. And 

expected average overlap (EAO) is the most important indicator for VOT2016 to evaluate the 

accuracy of a tracker.  

We compared the our method with other 9 trackers that have excellent evaluation results on the 

vot2016 data set, the results are shown in Table 2. SF_Siam outperforms other state-of-the-art trackers 

in terms of Overlap. In addition, all the performance of SF_Siam is better than its benchmark tracker 

SiamAN. 

 

Table 2. Comparisons between SF_Siam and state-of-the-art trackers on VOT2016 benchmark. 
Tracker SF_siam CCCT ColorKCF DPT GCF NSAMF SiamAN SiamRN STAPLEp SSKCF 

Accuracy 0.552 0.438 0.494 0.484 0.521 0.499 0.531 0.549 0.551 0.542 

EAO 0.248 0.223 0.226 0.235 0.219 0.227 0.236 0.278 0.286 0.277 

Failures 27.17 29.32 25.77 31.94 34.22 27.46 29.80 24.00 24.32 22.71 

FPS 47.47 10.98 117.23 4.59 6.35 8.57 14.14 7.84 17.84 45.94 
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4.5 Result on VOT2017 

Compared with VOT2016, VOT2017 replaces 10 challenging sequences with 10 difficult sequences. 

In addition, VOT2017 conducted a new real-time experiment in which the tracker needs to process a 

real-time video stream at least 25fps. It is challenging for almost all of the state-of-the-art trackers. 

Table 3 shows SF_Siam along with several real-time trackers listed in the report of the VOT2017. 

Different trackers have different advantages, and SF_Siam can rank 1st according to AUC. In addition, 

SF_Siam outperforms SiamFC in terms of Accuracy, EAO and AUC. 

 

Table 3. Comparisons between SF_Siam and state-of-the-art trackers on VOT2017 benchmark. 

Tracker SF_siam ASMS ECOhc KFebT Mosse_ca SiamDCF SiamFC ssckf Staple UCT 

Accuracy 0.521 0.500 0.510 0.456 0.422 0.507 0.511 0.538 0.541 0.495 

EAO 0.210 0.196 0.266 0.211 0.143 0.261 0.203 0.223 0.273 0.267 

AUC 0.344 0.282 0.284 0.274 0.216 0.311 0.311 0.330 0.316 0.320 

 

5. Conclusion 

In this paper, we propose a new tracking method (SF_Siam) using ShuffleNet. In order to eliminate 

the influence of depth network padding on tracking algorithm which based on siamese network, a no-

padding inside cropped residual unit is proposed in the architecture of the ShuffleNet. And to discuss 

the effect of the residual units, 3 kinds of residual units are proposed and discussed in this paper. 

Extensive experiments show that our proposed method achieves favorable performance against the 

state-of-the-art methods. In the future, we plan to continue exploring the effectiveness of deep 

networks in object tracking task. 
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