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1. Introduction 

Einstein’s theory of Relativity has always been the fundament of science research and proven 
by scientists to be correct for countless times ever since its publicity almost a century ago. 
Although it is now a commonly used tool by scientists to explain and predict many phenomena 
in the universe, many of its ideas are still foreign to the general public and science lovers at a 
high school level. However, before this report introduces this fundamental theory in an easily 
understandable way, we should first know that why the theory of Relativity even exists. 

Firstly, lets define the term “inertial” as something that is stationary or traveling at a constant 
velocity, and an “observer” as an object carrying a set of measuring tools that could be 
stationary or in motion. Imagine an inertial spacecraft traveling at a constant speed, and two 
masses are thrown from the spacecraft, one in the direction which the spacecraft is traveling at, 
and the other in the opposite direction. In this scenario, seen from a stationary observer outside 
the spacecraft, the two masses should have different speeds. This was described by Isaac 
Newton very clearly and should be quite intuitive. Now consider that two beams of light are 
emitted. According to the previous example of the two masses, the two beams of light should 
have different speeds as well. However, according to experiments first done by Albert 
Michelson and Edward Morley, the speed of light, c, is constant in all reference frames. Hence, 
it seems like we need a new theory that extends upon Newton’s to describe light, or more 
generally, objects traveling at or near the speed of light. This theory is Relativity as we know it. 

With that being said, this report would briefly introduce the theories of Special and General 
Relativity to audiences at a high school level, and hopefully motivates audiences to continue 
further studies in this subject. 

2. Motion in Newtonian Terms 

In this section we would discuss the movement of objects in Newtonian terms and how the 
Newtonian theory is incorrect under certain circumstances. That error eventually leads to the 
concept of Relativity and will be discussed in the next section. 

2.1. Inertial Frames 

It is very common for physics problems we see in textbooks to assume an object is moving in a 
straight line at a constant speed. But what exactly is a “straight line” and “constant speed”? Two 
important concepts have to be introduced to answer this question. A reference frame, which is 
essentially a set of coordinates, and an event, which is something that happens in a definite time 
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and definite place. The straight line, as defined in Newton’s laws, is the shortest path between 
two points in the frame, represented by the following equation in Cartesian coordinates: 

 

𝑑𝑆2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 (1.1) 

 

in which dS2 is the square of the change in distance, and x, y, and z are Cartesian coordinates 
measured by an observer traveling on the straight line. Any frame that experiences no external 
force, and thus no acceleration, is called an inertial frame, whereas an accelerating frame is 
called a non-inertial frame. 

A clock could be used to time the motion of the object in an inertial frame, and constant speed 
is defined as the second derivative of distance over time equal zero, namely 

d2x

dt2
= 0 (1.2) 

in the x direction. The same equation could be used for motions in other directions. 

Two reference frames could also move relative to each other, and the coordinates of a point 
could be represented separately on these two frames. For instance, a second observer moves in 
the x direction at a speed of v, so its x coordinates x′ relate to the first observer by the relation 
below: 

x′ = x − vt (1.3a) 

In this scenario, the frames are relatively stationary to each other in the y and z directions, so 
the y and z coordinates would be related to that of the first observer in the following way: 

y′ = y (1.3b) 

z′ = z (1.3c) 

The set of equations (1.3) is also known as the Galilean Transformation, and it is compatible 
only when v ≪ c. When v is not significantly smaller than c, the counterpart of the Galilean 
Transformation, the Lorentz Transformation, is used instead. This will be discussed further in 
section 2.2. 

2.2. Addition of Velocities 

Before answering the question why a larger speed changes the relationship between two 
inertial frames, let’s talk more about motion in Newtonian terms and why it is not compatible 
for objects traveling at high speeds.  

Suppose an object is moving at velocity V in an inertial frame where its speed in the x direction 
is represented as Vx. Thus, from the perspective of a reference frame that is moving at speed v 
in the x direction, the speed of the particle in the x direction is 

Vx′
= Vx − v (1.4) 

This is known as the Newtonian addition of velocities rule, as described in the introduction of 
this report. 

There exists a hypothetical frame called the Ether in which photons travel at the speed of light, 
c. Given the Newtonian addition of velocities rule, the speed of photons must not be identical 
from the perspective of any inertial frame that is not relatively stationary to the Ether. Hence 
in this theory, the speed of photons could be greater than or less than c depending on the 
direction of motion of the inertial frame. However, Albert Michelson and Edward Morley 
published the results of an experiment in 1887 showing that the speed of photons were 
identical and constant in all directions: all traveling at c. This proved that the Newtonian theory 
to be not applicable for photons and that the Ether did not exist, and a new theory was needed. 
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3. Special Relativity 

3.1. Relativistic Spacetime 

Firstly, several important concepts and useful tools for representing relativistic spacetime 
would be introduced. A spacetime diagram could be used to show the relative motion in this 
scenario. The horizontal axis shows the displacement of an object at a certain direction, which 
the vertical axis shows the time. Time here is represented by ct but not t in order to make the 
units of both axis identical for simplicity. 

 
Fig 1. An example of a spacetime diagram. In this diagram, the event P happens at point xp at 

the time tp. 

The worldline, which describes the motion of an object, is an important concept in spacetime 
diagrams. For instance, the worldline A in figure 2 represents an object which first accelerates 
and then travels at a constant speed, and the worldline B represents an object that remains still. 

 

 
Fig 2. An example of two worldlines. 

The reciprocal of the gradient of a worldline shows the velocity of the object. For a gradient 
larger than 1, a small change in ct is larger than a small change in x, meaning that the object is 
traveling slower than the speed of light. For a gradient smaller than 1 and larger than 0, a small 
change in ct is less than a small change in x, meaning that the object is traveling faster than the 
speed of light. A gradient equal 1 simply means the speed of light. Stationary objects have 
vertical worldlines. 

Suppose flashes of light are emitted from an event O and travels in all directions. The worldlines 
of the light rays form a right angle above O, which together with the worldlines is called a light 
cone. All future events related to O could only be within the light cone as the speed of light is 
the fasted speed any object could travel at. Similarly, the past events related to O forms a right 
angle below O, as shown in Fig 4. These worldlines, together with the regions of spacetime they 
enclose, is called the light cone of event O. 
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Fig 3. The light cone of an object O. 

Point A is within the light cone, meaning that O could send signals to A. A could not send signals 
to O, however, because A is ahead of O in time. O and A are said to be timelike separated. On the 
other hand, B is out of reach of any signal from O, so O and B could not communicate with each 
other in any way. O and B are said to be spacelike separated. For an object right on the light 
cone of O, these two objects are said to be null separated. 

Now there would be an example that helps understanding of spacetime under relativistic terms. 
Suppose there are two parallel mirrors separated by a distance L in the y direction. A beam of 
light is emitted from event A, and reflects at event B back to event C. In one inertial frame, the 
mirrors could be seen as stationary, while in another inertial frame, the mirrors are traveling 
in the x′ direction at a velocity of V, and in another inertial frame, the mirrors are stationary. 

 
Figs 4. The mirror example as mentioned above. Left: the perspective of the first reference 

frame in which the mirrors are stationary, and the coordinates of the light beam are denoted 
as (t, x, y, z). Right: the perspective of the second inertial frame, and the coordinates of the 

light beam are denoted as (t′, x′, y′, z′). 

In the first inertial frame in which the mirrors are stationary, distance traveled in all three 
directions equal 0, or  

dx = dy = dz = 0 (2.1) 

 

Therefore, the total distance traveled could be written as  

 

2L (2.2) 

 

and the total time needed is thus 

 

2L

c
(2.3) 

In the inertial frame which the mirrors are in motion, however, the coordinates are different. 
Since palpably the displacements A′B′ = B′C′ , they could be considered separately for 
simplicity. When traveling through A′B′, the displacement in the x′ direction, the direction in 
which the frame is moving, is denoted as 
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dx′ = Vdt′ (2.4) 

According to the Pythagoras theorem, therefore, the displacement A′B′ could be denoted as 

√L2 + (
dx′

2
)2 (2.5) 

 

Hence, the total displacement could be written as 

2√L2 + (
dx′

2
)2 (2.6) 

 

and thus the time taken could be given as 

2

c
√L2 + (

dx′

2
)2 (2.7) 

 

Since there is no displacement in the y′ and z′ directions in this frame as well, 

 

dy′ = 0 (2.8) 

dz′ = 0 (2.9) 

 

Substituting (2.1), (2.3), (2.4), and (2.7), it is easy to derive that  

 

−(cdt′)2 + (dx′)2 = −(cdt)2 (2.10) 

Hence  

 

(ds)2 = −(cdt)2 + (dx)2 + (dy)2 + (dz)2 (2.11a) 

(ds)2 = −(cdt′)2 + (dx′)2 + (dy′)2 + (dz′)2 (2.11b) 

 

Here, (ds)2 is the invariant since it could be both positive and negative, which means it is 
identical in both reference frames. This invariance is analogous to the distance in Euclidean 
geometry as defined in equation (1.1). The concept of invariance is one of the most important 
concepts in Special Relativity, and it could together with the concept of spacetime define the 
Minkowski spacetime, another very useful concept.  

This also means that for ∆s2 < 0, the distance that an object travels in a certain period of time 
is less than the distance that light travels. Thus, it is said to be inside the light cone, which means 
spacelike separation. Similarly, ∆s2 > 0  means timelike separation, and ∆s2 = 0  means null 
separation. 

Given (2.11a), it is palpable that distances represented in a spacetime diagram do not 
necessarily match distances in Euclidean geometry. 
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Fig 6. An example in which the spacetime in a spacetime diagram is different from the real 

spacetime. 

In this spacetime diagram, the length of AB  is 3 and the length of BC  is 5. According to 
Pythagoras’ Theorem on a Cartesian plane in Euclidean geometry, the length of AC =

√AB2 + BC2 = √34. However, since this is in a spacetime diagram, according to (10.2), the 

interval (represented as A′C′ to show the difference) could be given as √−AB2 + BC2 = 4. This 
invariant interval A′C′ is both shorter than AC in a Cartesian plane and BC on the diagram. 

3.2. Lorentz Transformation 

Consider this question: how are coordinate systems in two inertial frames in relative motion 
related to each other? The idea of transforming between these two coordinates is finding an 
invariant and carry out the deduction of the coordinate transform based on that it. This leads 
to the idea of Lorentz Transformation, under which the speed of an object could be seen as an 
invariant property. If one wishes to know how are two frames related to each other in 
relativistic terms, the key is to first let the two frames agree on a common invariant interval. 
With that being said, the coordinates (t′, x′, y′, z′) in an inertial frame traveling at speed v in the 
x  direction is related to the coordinates (t, x, y, z)  in a stationary frame by the following 
equations: 

t′ = γ (t −
vx

c2
) (2.12a) 

x′ = γ(x − vt) (2.12b) 

y′ = y (2.12c) 

z′ = z (2.12d) 

in which γ is the Lorentz factor, namely 

γ =
1

√1 −
v2

c2

(2.13)
 

 

The two frames in the scenario of the set of equations (2.12) are relatively stationary in the y 
and z directions. This set of equations could be adjusted for different speeds in the y and z 
directions as well. This is known as the Lorentz Transformation. 

Note that for v ≪ c, the differences caused by γ could be neglected since γ becomes small, so 
these equations above change to the Galilean Transformation (transformation in non-
relativistic situations) instead. 

In the next sections we would show the significance and importance of Lorentz Transformation 
in understanding Relativity and include examples of its application. 

3.3. Constant Speed of Light 

The above equation is one of the fundaments of Special Relativity. Another key feature that 
leads to Special Relativity is the inexistence of the Ether, as mentioned previously. Therefore, 
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another equation modeling the addition of relativistic velocities is needed, and we could use 
the Lorentz Transformation to derive it. 

Consider the case that Bob is in an inertial frame traveling at speed vf in the x direction and he 
throws an object in a straight line at speed v in the same direction as the motion of the inertial 
frame. Alice is in a stationary frame. Using the Newtonian addition of velocities rule, the speed 
of the object is simply v′ = vf + v, but as vf and v increases to relativistic speeds, we have to 
consider the Lorentz Transformation. With that being said, we could get that 

 

v′ =
x′

t′
=

xf + vt

tf +
vxf

c2

(2.14a) 

 

by substituting equations (2.12a) and (2.12b), where xf  is the distance traveled by Bob’s 
reference frame and tf is the time the frame used. The sign change indicates that vf and v are in 
the same direction. By dividing both the numerator and the denominator by tf, we could get 

 

v′ =

xf

tf
+ v

1 +
v ×

xf

tf

c2

(2.14b)
 

 

replacing 
xf

tf
 with vf, we could finally have 

v′ =
vf + v

1 +
vf × v

c2

(2.14c) 

 

This formula works for v < c as well, and the reader could easily find that even if vf and v are 
both less than c, the result is still different from that calculated with the Newtonian addition of 
velocities rule. When v = c, v′ = c regardless of the value of vf. This is known as the Einsteinian 
addition of velocities rule. 

Having a constant speed of light in all reference frames could lead to problems. Assume that 
there is a rocket traveling at a constant speed v in the x direction relative to a nearby planet. 
Alice is standing at the front of the rocket while Bob is standing at the back of the rocket. Using 
the rocket as reference frame, when Alice and Bob both shoot a laser at a detector O that is right 
in the middle of the rocket, O would receive the two lasers simultaneously. Using the nearby 
planet as reference frame, however, the rocket is relatively moving, so the laser from Bob has 
to travel a longer distance than the laser from Alice, since it could be regarded as that O is 
catching up with Alice and moving away from Bob at speed v. That means if O is to receive the 
two lasers simultaneously, Bob would have to emit her laser earlier than Alice does, since both 
lasers travel at speed c . Hence, two simultaneous events in one inertial frame may not 
necessarily be so in another. This is known as the relativity of simultaneity, a very important 
concept in Special Relativity. 
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Fig 5. Graph showing the rocket example. The distances the lasers from Alice and Bob have to 

travel in order to reach O is the same in the rocket frame, but not in the planet frame since 
there is relative motion. 

3.4. Time Dilation and Length Contraction 

A clock measures time, and thus timelike distances, corresponding to a ruler, which measures 
spacelike distances. Therefore, a clock could also be seen as to measure the length of a segment 
of a worldline, which the following formula could be used: 

dτ2 ≡ −
ds2

c2
(2.15) 

in which dτ is the length of the segment of the worldline, also known as proper time. This 
equation applies to two near events. 

Fig 7. Graph comparing proper time and coordinate time. As seen in the graph, the change in 
coordinate time, ∆t, is less than the change in proper time. This is called “time dilation” and 

will be explained further below. 

The proof and the mathematical formula of time dilation would be derived below.  Substituting 
(2.11a) into (2.13), it could be derived that 

dτ2 = −
−(cdt)2 + (dx)2 + (dy)2 + (dz)2

c2
(2.16) 

dτ2 = − {−(dt)2 +
1

c2
[(dx)2 + (dy)2 + (dz)2]} (2.17) 

dτ2 = (dt)2 {1 −
1

c2
[(

dx

dt
)

2

+ (
dy

dt
)

2

+ (
dz

dt
)

2

]} (2.18) 

and in terms of space only, we could substitute V2 = (
dx

dt
)

2

+ (
dy

dt
)

2

+ (
dz

dt
)

2

 into (2.18) to get 

dτ2 = (dt)2 (1 −
V2

c2
) (2.19) 

and therefore 

dτ = dt√1 −
V2

c2
(2.20) 

which could be rearranged as the following: 
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dt =
dτ

√1 −
V2

c2

(2.21)
 

 

For simplicity, we could substitute (2.13) into (2.21) to get the following: 

dt = γdτ (2.20) 

Since for any V < c, γ > 1 and thus dt > dτ, meaning that the time along a timelike worldline 
happens to be less than the time in a stationary inertial frame. This which leads to the name 
“time dilation”. Note that this formula malfunctions on a spacelike worldline as the term under 

the square root 1 −
V2

C2 would be less than zero. 

The Lorentz factor could be applied not only to time, but to length as well. The proper length 
(length of the object along a timelike worldline), L′, is smaller by a factor of γ than the length of 
an identical object measured in a stationary inertial frame, L . This means that an object 
traveling at relativistic speeds seems to be smaller than another identical object which is 
stationary. Therefore, this is known as length contraction. 

Due to time dilation and length contraction, we could not represent an inertial frame and a 
stationary frame in a spacetime diagram using the same set of axes anymore. We would have 
to introduce a new set of axes to show the two frames on the same spacetime diagram. Note 
that the blue axes in Fig 8 is the result of a Lorentz Transformation of the two black axes.  

 
Fig 8. A spacetime diagram with two sets of axes. In this diagram, ct and x represents 

coordinates in the stationary frame, and ct′ and x′ represents coordinates in the moving 
inertial frame. Note that here the displacement along the y and z directions are assumed to be 

zero. 

From equations (2.12a) and (2.12b), it is straightforward to see that x′ and t′ are mutually 
independent. Therefore, the x′ axis in Fig 8 is the axis on which ct′ = 0, and vice versa. This 
determines that both the x′ and ct′ axes should be straight lines. 

As seen from Fig 8, the proper time and proper length of the event O is different from its time 
and length measured in a stationary inertial frame. This is how coordinates of an event in two 
inertial frames could be represented in one spacetime diagram only. 

3.5. Interesting Problems that Arise 

Time dilation could lead to interesting problems. For instance, suppose there are two twins, 
Alice and Bob. Alice stays on Earth while Bob sets off on a return journey to Alpha Centauri (a 
star about 4.4 lightyears away from Earth) on a spaceship that could instantly accelerate to 0.8c 
and decelerate back to 0. Due to time dilation, using Earth as the rest frame, when Bob arrives 
back on Earth, he would experience a shorter time than Alice, who stays on Earth, so Bob would 
be younger than Alice. Alternatively, we could look at this from Bob’s rest frame, and Alice was 
traveling at 0.8c away from Bob, so in this case Alice would be the younger sibling. Either 
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argument seems to be logical, but Alice could not be younger and older than Bob at the same 
time. This is the famous twin paradox. 

Fig 9. A spacetime diagram showing the twin paradox seen from Alice’s perspective. AC is 
Alice’s worldline, and AB and BC is Bob’s worldline. In the diagram, event A is Bob’s departure 
from Earth, event B is when Bob reaches Alpha Centauri, and event C is when Bob arrives back 

on Earth.  

One could easily notice that at B, Bob undergoes an acceleration that changes the direction of 
his velocity. Due to this acceleration, Bob’s and Alice’s worldlines are not symmetrical anymore, 
so one could not simply reverse the two. As a result, the twin paradox is not really a paradox, 
and Bob would be younger than Alice when he returns. The age difference at event C when Bob 
returns to Earth is trivial and left as an exercise for the reader. 

Another interesting example would be a runner running at near the speed of light carrying a 
20m long pole in the direction of motion. In front of him is a 10m long barn, with both doors on 
the path of the runner and wide open. Assume the runner is running at a speed that from the 
barn’s perspective, the pole is contracted to only 10m long, so it the two doors could close 
simultaneously and the pole would fit perfectly fine. However, from the runner’s perspective, 
the barn would be only 5m long, and enclosing the pole inside the barn would seem impossible. 
However, this is simply another misconception and could be solved using a spacetime diagram 
as well. 

Fig 9. Spacetime diagram of the pole and barn example, seen from the pole and the runner’s 
perspective. Hence, seen from this perspective, the runner and the pole is in a rest frame, and 

the barn is moving towards them. 

As palpably seen, from the barn’s perspective, the time when the front door and rear door closes 
(events A and B) are the same, and these two events are simultaneous. However, from the 
runner’s perspective, these two events are not simultaneous, and event A happens before event 
B. Therefore, although to the barn the pole has already been enclosed in it, to the runner parts 
of the pole are still outside the barn, and the rear door is not closed. 
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4. The Equivalence Principle 

Now that we have briefly introduced Special Relativity, it’s time to move onto other parts of 
Relativity, namely General Relativity and its applications. However, before we do that, one 
essential concept, the equivalence principle, has to be discussed first. The equivalence principle 
is one of the most key contributors to General Relativity, which would be covered in the next 
section. This section of the report would briefly introduce the equivalence principle and its 
applications.  

4.1. Two Different Types of Mass 

People generally regard the mass of an object as a single feature. However, there are actually 
two types of mass, gravitational and inertial,and they have different meanings and 

significances.  

Gravitational mass measures how strongly two objects attract, given by  

F =
GMm

R2
(3.1) 

Inertial mass measures the inertial of an object, given by 

F = ma (3.2) 

Given equations (3.1) and (3.2), we could easily cancel out the two ms for the same object 
measured, namely 

a =
GM

R2
(3.3) 

Hence, the acceleration, or the fall rate in a gravitational field, of an object is independent of the 
mass of the object, and only depend on the strength of the gravitational field. This was first 
proved to be true by Galileo a few centuries ago by rolling balls of the same size but different 
masses off an inclined plane and discovered that the masses of the balls had no direct 
relationship with their accelerations. 

In reality, there is no way one type of mass of an object could be measured individually without 
the other type. However, many experiments have proven that the gravitational mass and 
inertial mass of an object are in fact equal. This is known as the equivalence principle.  

In order to have a clearer understanding of the significance of the equivalence principle, 
consider Alice sitting in a rocket and feeling a force pulling her backwards. According to the 
equivalence principle, any mechanical experiment (e.g., projectile experiment, lever 
experiment, etc.) she conducts on the rocket would not be able to let her determine whether 
the rocket is in constant acceleration, or she is sitting on a rocket that is itself not moving but 
rather in a gravitational field, e.g., on Earth. In other words, the effects of a constant 
gravitational field and a constant acceleration of the same magnitude on the same object are 
identical. This is a very important step that leads to General Relativity in Section 4. 

4.2. Light Rays in a Gravitational Field 

In the previous section we discussed that any kind of mechanics experiment could not 
distinguish between a gravitational field and a constant acceleration. However, what if the 
experiment was not about mechanics? Maybe in this case, we could go beyond known physics 
and assume that the equivalence principle is also valid for all physics, and see what that teaches 
us. 

Suppose a rocket with two openings at different heights, one on each side, is flying in the z 
direction at a constant velocity, as shown in the graph below. A beam of light enters the rocket 
through the opening on the left. However, during the time it takes the beam of light to travel 
through the rocket, the rocket itself has gone up a bit from its original position. Therefore, 
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instead of hitting the wall of the rocket at the same level as it entered, the beam of light exits 
the rocket through the second opening on the right, slightly below the first opening. 

Now the scenario changes to an accelerating rocket, so the reference frame becomes non-
inertial. The equivalence principle, which was assumed earlier to be valid for light too, has to 
be taken into account. Hence, a generalized version of the equivalence principle could be used 
to predict the behavior of light in constant acceleration, which we could then use to deduce how 
light might behave in a gravitational field. 

In this case, the entry point of the beam of light would also be higher than the exit point, but 
seen from the rocket frame, the light would no longer travel in a straight pass, but rather a 
curved one. 

 

Fig 10. The graph of the example above. This graph is not to scale, and has been exaggerated 
to make the effects more significant. Note that the measurements in the example are taken 

from the rocket frame, which is inertial. 

 

 
Fig 11. The curvature of the beam of light observed by an observer on an accelerating rocket. 
Note that this effect could also be observed by rocket at rest in a gravitational field, according 

to the equivalence principle. 

From the example above, we could learn that light bends under uniform accelerations. 
Therefore, based on the previous assumption of the equivalence principle, it is then safe to 
conclude that gravity bends light, which turn out to be a key feature of General Relativity.  
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4.3. Clocks in Gravitational Fields 

Now let’s consider the scenario where Alice stands at the top of a rocket traveling at a constant 
acceleration, and Bob stands at the bottom of the rocket. Alice sends a signal towards Bob, and 
the time interval between the sending and the receiving of the signal t is measured using a clock 
in an inertial frame outside of the rocket.  

 
Fig 12. Alice standing at the top of a constantly accelerating rocket sending a signal to Bob, 

who is standing at the bottom of the rocket. 

For a rocket traveling at a constant acceleration, the time interval between each signal received 
by Bob, τ′ is greater than the time interval between each signal sent by Alice, τ. This is because 
the light beam is received at shorter intervals than they are emitted on the accelerating rocket, 
since Bob catches up with the signal slowly as the it travels towards Bob. This effect is not seen 
on the non-accelerating rocket. Therefore, together with the equivalence principle, it is safe to 
conclude that signals are received at a faster rate than they are emitted in a gravitational field. 

The magnitude of this effect could be calculated in the following way. Bob’s position could be 
denoted as 

 

zB =
1

2
gt2 (3.4) 

 

Hence, Alice’s position could be denoted as 

 

zA = ℎ +
1

2
gt2 (3.5) 

 

where ℎ is the length of the rocket. Suppose the signal is emitted at t = 0 and received at t1. 
Therefore, the distance traveled by the first signal is 

 

zA(0) − zB(t1) = ct1 (3.6) 

 

Using ∆τA as the time the second signal is emitted and t1 + ∆τB as the time it’s received where 
∆τB is a time interval, assuming ∆τA and ∆τB  are small that we only need to consider linear 
terms, the distance traveled by the second signal could be denoted as 

 

zA(∆τA) − zB(t1 + ∆τB) = c(t1 + ∆τB − ∆τA) (3.7) 
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Equations (3.5) and (3.6) could be expanded to get 

 

ℎ −
1

2
gt1

2 = ct1 (3.8a) 

ℎ +
1

2
g∆τA

2 −
1

2
gt1

2 − gt1∆τB −
1

2
g∆τB

2 = c(t1 + ∆τB − ∆τA) (3.8b) 

 

respectively. Since ∆τA and ∆τB  are small, (3.7b) could be simplified as 

 

ℎ −
1

2
gt1

2 − gt1∆τB = c(t1 + ∆τB − ∆τA) (3.8c) 

 

Using (3.8a) and (3.8c), the following result could eventually be derived 

 

∆τB = ∆τA (1 −
gℎ

c2
) (3.9) 

 

Now that equation (3.9) has been derived, the equivalence principle could be applied to real-
world scenarios.  

 

Since gℎ  is simply the difference in gravitational potential, the it satisfies the following 
relationship: 

 

ΦA − ΦB = gℎ (3.10) 

 

in which Φ is the gravitational potential. Therefore, we have 

 

∆τB = ∆τA (1 −
ΦA − ΦB

c2
) (3.11) 

 

Moreover, the rates of emission, ωA and ωB, could simply be represented by 1/∆τA and 1/∆τB 
respectively. Therefore, the following formula could be derived:  

 

emitting rate = (1 −
ΦA − ΦB

c2
) × receiving rate (3.12) 

 

From (3.12) it is easy to note that the receiving rate would be higher than the emitting rate. 
Therefore, Bob would observe a blueshift effect on the signals he receives. On the other hand, if 
in this case Bob sends a signal to Alice instead, then Alice would observe a redshift effect. The 
signals used in this equation is only a tool to assist comprehension, and not necessary to 
observe this effect. This effect also matches the predictions of the equivalence principle. 

4.4. Examples of Application of the Equivalence Principle 

Now that the fundamentals of the equivalence principle have been introduced, this section 
would discuss the equivalence principle in a scenario that is closer to real life.  
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Although very minor, the effects of the equivalence principle could be measured in our daily 
lives. Suppose Alice and Bob works at the same company. Alice’s office is on the ground floor, 
but Bob’s office is in higher floors about 100 meters above the ground. Therefore, substituting 
100 meters into (3.9) and (3.10), one could know that measured from the ground, Bob’s 
heartbeat would be faster than Alice’s by a magnitude of 

 

1 +
9.81ms−2 × 100m

(3 × 108ms−1)2
(3.13) 

 

That is approximately 1.09 × 10−14 . In other words, Bob would age faster than Alice by a 
magnitude of 1.09 × 10−14 simply because he is sitting at a level higher than her. 

This effect could also be observed in light. Suppose a star emits light at a frequency of ω. Since 

the gravitational potential of the star is Φ = −
GM

R
, the frequency of the light measured from a 

distant observer is then given by 

 

ω′ = (1 −
GM

Rc2
) ω (3.14) 

 

This effect is similar to the redshift caused by the Doppler Effect although having a completely 
different mechanism, and it is known as the gravitational redshift since it is caused by gravity. 

The Global Positioning System (GPS) also applies the equivalence principle. GPS satellites travel 
at high velocities around the Earth at different altitudes. Therefore, the signals they send to 
each other experience differences in time and must be tuned to function correctly.  

Firstly, how the GPS functions and its sources of error must be introduced. In one dimensional 
spacetime, two satellites are needed to know the exact location of a point, as shown in the graph 
below. 

 
Fig 13. The way two satellites use signals to find an exact location along a worldline in one 

dimensional spacetime. The straight lines a and b are the worldlines of two satellites. 

Each satellite sends a signal that includes the coordinates of its place of emission. The 
coordinates of the point P where the two signals are received simultaneously are given by the 
following equations:  

ctp =
1

2
[c(tA + tB) + (xB − xA)] (3.15a) 

xp =
1

2
[c(tB − tA) + (xB + xA)] (3.15b) 

 

There are two factors influencing the difference in time between different satellites in the GPS: 
time dilation (Special Relativity) and the Earth’s gravitational effects (General Relativity).  
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Given (2.19), it is easy to know that the fractional correction ηtime dilation needed to compensate 
the effects of time dilation is 

 

ηtime dilation ≈
1

2
(

V

c
)

2

(3.16) 

 

in which V is the velocity of a satellite. 

Given (3.11), it is also easy to know that the fractional correction ηgravitational potential needed to 

compensate the effects of gravitational potential is 

 

ηgravitational potential ≈
GM

Rc2
(3.17) 

 

in which M  and R  is the mass and radius of the Earth respectively. In order to compare 
equations (3.16) and (3.17), we could use the following formula from Newtonian gravity: 

 

V2

R
=

GM

R2
(3.18) 

 

which shows the centripetal acceleration of the satellite. Note that from (3.17) and (3.18), the 
effects of gravitational potential are twice as significant as the effects of time dilation. Therefore, 
in order to have a properly functioning GPS system, both effects have to be considered. 

General Relativity 

Now the report has covered much about Special Relativity and the equivalence principle, and 
the topic would shift to General Relativity. This section would briefly introduce General 
Relativity and its relationship with Newtonian gravity. General Relativity is actually simply a 
name for Einstein’s counterpart of Newton’s theory of gravity, or Einstein’s theory of gravity. 
From Einstein’s theory, we could learn that gravity was in fact not a force, and the motion of 
objects once believed to be caused by that force are in reality caused by the curvature of 
spacetime. 

4.4.1 Influence of Gravitational Potential on Proper Time 

Equation (2.11a) is already a function that defines spacetime quite well. However, it still does 
not cover all aspects of Newtonian gravity and General Relativity, since it only applies to 
situations where gravity is negligible. Hence, a more generalized equation is necessary. The idea 
of General Relativity could be added onto (2.11a) to get 

 

ds2 = − (1 +
2Φ

c2
) (cdt)2 + (1 −

2Φ

c2
) [(dx)2 + (dy)2 + (dz)2] (4.1) 

  

Note that one limitation of (4.1) is that it only works for weak gravitational fields, but that 
essentially covers a majority of gravitational fields present in the universe. 

This could be proven as the following. Suppose signals are emitted at xA  and received at xB 
respectively. The spacetime diagram of these two events could be pictured as Fig 14 as shown 
below.  
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Fig 14. Spacetime diagram of two emissions, showing the emitter, the receiver, and two 
signals sent. Since in this case the emitter and the receiver at xA and xB are both constant 
observers, there should be two constant straight lines representing their worldlines. The 
worldlines of the signals would not be straight lines with gradient equal one as in a flat 

spacetime, but they should have identical shapes since it is not dependent on time. 

Here, ∆t represents the same coordinate time interval on the two worldlines. However, the 
proper time interval between the two points on the worldlines are not the same due to 
difference in gravitational potential. Since the event of the signals were emitted happen at only 
a point in time, the displacement along all three directions in the space dimension is zero, as 
described by (2.1), or dx = dy = dz = 0. Equation (4.1) becomes 

 

ds2 = − (1 +
2Φ

c2
) (cdt)2 (4.2) 

 

after substituting the displacement along the space dimension. Further substituting (2.13) into 
(4.2), it is not hard to find that 

 

∆τ2 = (1 +
2Φ

c2
) ∆t2 (4.3) 

 

In order to calculate the respective gaps in time for the emitter and the receiver, we could take 

the square root form both sides of equation (4.3). Moreover, Since the value of 
2Φ

c2  is small, we 

could apply it to the relation (1 + x)1 2⁄ ≈ 1 +
1

2
x to it for a more simplified form: 

 

∆τA = (1 +
ΦA

c2
) ∆t (4.4a) 

∆τB = (1 +
ΦB

c2
) ∆t (4.4b) 

 

Hence, the difference between the proper time intervals of the two emissions is given by 
eliminating ∆t in both equations (4.4a) and (4.4b) to get 

 

∆τB = (1 +
ΦB − ΦA

c2
) ∆τA (4.5) 
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This agrees with the effects predicted by the equivalence principle in section 3. Therefore, we 
could conclude that General Relativity agrees with the equivalence principle. 

 

The definition of proper time itself may vary when considering the effects of gravitational 
potential. More specifically, the proper time between events A and B could be denoted as 

 

τAB = ∫ dτ = ∫ (−
ds2

c2
)

1 2⁄B

A

B

A

(4.6a) 

 

after substituting (2.13). Expanding (4.6a),  

 

τAB = ∫ {(1 +
2Φ

c2
) (dt)2 −

1

c2
(1 −

2Φ

c2
) [(dx)2 + (dy)2 + (dz)2]}

1 2⁄B

A

(4.6b) 

 

Taking dt out,  

 

τAB = ∫ dt {(1 +
2Φ

c2
) −

1

c2
(1 −

2Φ

c2
) [(

dx

dt
)

2

+ (
dy

dt
)

2

+ (
dz

dt
)

2

]}

1 2⁄B

A

(4.6c) 

 

Then a binomial expansion could be performed to equation (4.6c). The result could be therefore 
shown as the following: 

 

τAB ≈ ∫ [1 −
1

c2
(

1

2
V2 − Φ)]

B

A

(4.7) 

 

Notice that (4.7) takes into account both the effects of time dilation and gravitational potential, 
just suitable for the GPS mentioned in the section 3.4. These effects were previously induced 
using the equivalence principle, but now we could see that they could also be derived using the 
idea of curved spacetime. 

5. Conclusion 

The theories of Special and General Relativity not only filled the gaps of Newtonian geometry, 
but also contributed to many other great theories in science and projects in engineering. 
Relativity is surely one of the greatest theories ever in the history of science and even the 
history of the human race. 

The knowledge of Relativity extends way beyond the context of this report, and the purpose of 
this report is only to give readers a brief, easily-understandable introduction of Relativity. 
There are way more attracting phenomena that could be explained using Relativity: black holes, 
gravitational waves, and the Big Bang, to name a few. For instance, General Relativity proofed 
that mass warps spacetime, which then lead to the idea of an extreme contortion of spacetime 
caused by an almost infinite density that even light could not escape. This idea is commonly 
known as the black hole. And now, about a century after General Relativity was introduced, 
humans finally succeeded in taking pictures of two black holes, Sagittarius A* at the center of 
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the Milky Way and M87* at the center of galaxy Messier 87, proving General Relativity to be 
valid once again.  

General Relativity is also the fundament of various branches of physics. It predicts the 
expansion of the universe in cosmology, and it is they key to understanding reunification of 
forces such as string theory and inspired many ideas to sprout in particle physics.  

Is Relativity enough to explain everything then? A short answer would be no, since our 
understanding of the universe is still limited. Still, it probably is not wrong given all the 
phenomena it does explain; it may be incomplete though, and improvements could probably be 
made to make it able to explain even more about the Universe. 

Bibliography 

[1] Hartle, James B. Gravity: An Introduction to Einstein's General Relativity. Cambridge University 

Press, 2021.  

[2] Griffiths, David J. Revolutions in twentieth-century physics. Cambridge University Press, 2013. 

 

 


